Update README.md
Browse files
README.md
CHANGED
@@ -5,9 +5,6 @@ pipeline_tag: text-generation
|
|
5 |
---
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
## Model Details
|
12 |
|
13 |
### Model Description
|
@@ -21,174 +18,109 @@ pipeline_tag: text-generation
|
|
21 |
## Uses
|
22 |
|
23 |
|
24 |
-
1.
|
25 |
-
2.
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
41 |
-
|
42 |
-
[More Information Needed]
|
43 |
-
|
44 |
-
### Recommendations
|
45 |
-
|
46 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
47 |
-
|
48 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
49 |
|
50 |
## How to Get Started with the Model
|
51 |
|
52 |
```python
|
53 |
from transformers import GPT2Tokenizer
|
54 |
-
from
|
55 |
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
|
56 |
-
from
|
57 |
-
|
58 |
model_name='alsubari/aragpt2-mega-pos-msa'
|
59 |
|
60 |
|
61 |
tokenizer = GPT2Tokenizer.from_pretrained('alsubari/aragpt2-mega-pos-msa')
|
62 |
model = GPT2LMHeadModel.from_pretrained('alsubari/aragpt2-mega-pos-msa').to("cuda")
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
text='تعلَّمْ من أخطائِكَ'
|
67 |
-
|
68 |
-
|
69 |
-
'pad_token_id':tokenizer.eos_token_id,
|
70 |
-
'max_length': 256,
|
71 |
-
'num_beams':20,
|
72 |
-
'no_repeat_ngram_size': 3,
|
73 |
-
'top_k': 20,
|
74 |
-
'top_p': 0.1, # Consider all tokens with non-zero probability
|
75 |
-
'do_sample': True,
|
76 |
-
'repetition_penalty':2.0
|
77 |
-
}
|
78 |
-
|
79 |
-
##Pose Tagging
|
80 |
-
input_text = f'<|startoftext|>Instruction: {prml[1]} {text}<|pad|>Answer:'
|
81 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
|
82 |
-
output_ids = model.generate(input_ids=input_ids,**generation_args)
|
83 |
-
output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]
|
84 |
-
answer_pose=pyarabic.trans.delimite_language(output_text, start="<token>", end="</token>")
|
85 |
-
|
86 |
-
print(answer_pose)
|
87 |
-
# <token>تعلم : تعلم</token> : Verb <token>من : من</token> : Relative pronoun <token>أخطائك : اخطا</token> : Noun <token>ك</token> : Personal pronunction
|
88 |
-
|
89 |
-
##Arabic Sentence Analysis
|
90 |
-
input_text = f'<|startoftext|>Instruction: {prml[0]} {text}<|pad|>Answer:'
|
91 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
|
92 |
-
output_ids = model.generate(input_ids=input_ids,**generation_args)
|
93 |
-
output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]
|
94 |
-
|
95 |
-
print(output_text)
|
96 |
-
#تعلم : تعلم : فعل ، مفرد المخاطب للمذكر ، فعل مضارع ، مرفوع من : من : حرف جر أخطائك : اخطا : اسم ، جمع المذكر ، مجرور ك : ضمير ، مفرد المتكلم
|
97 |
```
|
98 |
|
99 |
-
## Evaluation
|
100 |
-
|
101 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
102 |
-
|
103 |
-
### Testing Data, Factors & Metrics
|
104 |
-
|
105 |
-
#### Testing Data
|
106 |
-
|
107 |
-
<!-- This should link to a Data Card if possible. -->
|
108 |
-
|
109 |
-
[More Information Needed]
|
110 |
-
|
111 |
-
#### Factors
|
112 |
-
|
113 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Metrics
|
118 |
-
|
119 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
|
123 |
### Results
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
#### Summary
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
## Model Examination [optional]
|
132 |
-
|
133 |
-
<!-- Relevant interpretability work for the model goes here -->
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
## Environmental Impact
|
138 |
-
|
139 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
140 |
-
|
141 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
142 |
-
|
143 |
-
- **Hardware Type:** [More Information Needed]
|
144 |
-
- **Hours used:** [More Information Needed]
|
145 |
-
- **Cloud Provider:** [More Information Needed]
|
146 |
-
- **Compute Region:** [More Information Needed]
|
147 |
-
- **Carbon Emitted:** [More Information Needed]
|
148 |
-
|
149 |
-
## Technical Specifications [optional]
|
150 |
-
|
151 |
-
### Model Architecture and Objective
|
152 |
-
|
153 |
-
[More Information Needed]
|
154 |
-
|
155 |
-
### Compute Infrastructure
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
#### Hardware
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Software
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
## Citation [optional]
|
168 |
-
|
169 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
170 |
-
|
171 |
-
**BibTeX:**
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
**APA:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
## Glossary [optional]
|
180 |
-
|
181 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## More Information [optional]
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## Model Card Authors [optional]
|
190 |
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
## Model Card Contact
|
194 |
|
|
|
5 |
---
|
6 |
# Model Card for Model ID
|
7 |
|
|
|
|
|
|
|
8 |
## Model Details
|
9 |
|
10 |
### Model Description
|
|
|
18 |
## Uses
|
19 |
|
20 |
|
21 |
+
1. pose tagging for arabic language and it may use for other languages
|
22 |
+
2. The model can be helpful for the arabic langauge students/researchers, since it provide the sentence anaylsis (اعراب الجملة ) in the context.
|
23 |
+
3. arabic word toknizer
|
24 |
+
4. it may use for translate the arabic dailects to MSA
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
## Main Labels
|
30 |
+
|
31 |
+
{'حرف جر': 'preposition',
|
32 |
+
'اسم': 'noun',
|
33 |
+
'اسم علم': 'proper noun',
|
34 |
+
'لام التعريف': 'determiner',
|
35 |
+
'صفة': 'adjective',
|
36 |
+
'ضمير': 'personal pronoun',
|
37 |
+
'فعل': 'verb',
|
38 |
+
'حرف عطف': 'conjunction',
|
39 |
+
'اسم موصول': 'relative pronoun',
|
40 |
+
'حرف نفي': 'negative particle',
|
41 |
+
'حروف مقطعة': 'quranic initials',
|
42 |
+
'اسم اشارة': 'demonstrative pronoun',
|
43 |
+
'حرف استئنافية': 'resumption',
|
44 |
+
'حرف نصب': 'accusative particle',
|
45 |
+
'حرف تسوية': 'equalization particle',
|
46 |
+
'حرف حال': 'circumstantial particle',
|
47 |
+
'أداة حصر': 'restriction particle',
|
48 |
+
'ظرف زمان': 'time adverb',
|
49 |
+
'حرف نهي': 'prohibition particle',
|
50 |
+
'حرف كاف': 'preventive particle',
|
51 |
+
'حرف ابتداء': 'inceptive particle',
|
52 |
+
'حرف زائد': 'supplemental particle',
|
53 |
+
'حرف استدراك': 'amendment particle',
|
54 |
+
'حرف مصدري': 'subordinating conjunction',
|
55 |
+
'حرف استفهام': 'interrogative particle',
|
56 |
+
'ظرف مكان': 'location adverb',
|
57 |
+
'حرف شرط': 'conditional particle',
|
58 |
+
'لام التوكيد': 'emphatic',
|
59 |
+
'حرف نداء': 'vocative particle',
|
60 |
+
'حرف واقع في جواب الشرط': 'result particle',
|
61 |
+
'حرف تفصيل': 'explanation particle',
|
62 |
+
'أداة استثناء': 'exceptive particle',
|
63 |
+
'حرف سببية': 'particle of cause',
|
64 |
+
'التوكيد - النون الثقيلة': 'heavy noon emphesis',
|
65 |
+
'حرف استقبال': 'future particle',
|
66 |
+
'حرف تحقيق': 'particle of certainty',
|
67 |
+
'لام التعليل': 'purpose',
|
68 |
+
'حرف جواب': 'answer particle',
|
69 |
+
'حرف اضراب': 'retraction particle',
|
70 |
+
'حرف تحضيض': 'exhortation particle',
|
71 |
+
'حرف تفسير': 'particle of interpretation',
|
72 |
+
'لام الامر': 'imperative',
|
73 |
+
'واو المعية': 'comitative particle',
|
74 |
+
'حرف فجاءة': 'surprise particle',
|
75 |
+
'حرف ردع': 'aversion particle',
|
76 |
+
'اسم فعل أمر': 'imperative verbal noun'}
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
## How to Get Started with the Model
|
80 |
|
81 |
```python
|
82 |
from transformers import GPT2Tokenizer
|
83 |
+
from pyarabic.araby import strip_diacritics,strip_tatweel
|
84 |
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
|
85 |
+
from transformers import pipeline
|
86 |
+
|
87 |
model_name='alsubari/aragpt2-mega-pos-msa'
|
88 |
|
89 |
|
90 |
tokenizer = GPT2Tokenizer.from_pretrained('alsubari/aragpt2-mega-pos-msa')
|
91 |
model = GPT2LMHeadModel.from_pretrained('alsubari/aragpt2-mega-pos-msa').to("cuda")
|
92 |
|
93 |
+
generator = pipeline("text-generation",model=model,tokenizer=tokenizer,device=0)
|
94 |
+
def generate(text):
|
95 |
+
prompt = f'<|startoftext|>Instruction: {text}<|pad|>Answer:'
|
96 |
+
pred_text= generator(prompt,
|
97 |
+
pad_token_id=tokenizer.eos_token_id,
|
98 |
+
num_beams=20,
|
99 |
+
max_length=256,
|
100 |
+
#min_length = 200,
|
101 |
+
do_sampling=False,
|
102 |
+
top_p=0.5,
|
103 |
+
top_k=1,
|
104 |
+
repetition_penalty = 3.0,
|
105 |
+
# temperature=0.8,
|
106 |
+
no_repeat_ngram_size = 3)[0]['generated_text']
|
107 |
+
try:
|
108 |
+
pred_sentiment = re.findall("Answer:(.*)", pred_text,re.S)[-1]
|
109 |
+
except:
|
110 |
+
pred_sentiment = "None"
|
111 |
+
|
112 |
+
return pred_sentiment
|
113 |
text='تعلَّمْ من أخطائِكَ'
|
114 |
+
generate(strip_tatweel(strip_diacritics(text)))
|
115 |
+
#' تعلم ( تعلم : فعل ) من ( من : حرف جر ) أخطائك ( اخطاء : اسم ، ك : ضمير )'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
```
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
### Results
|
120 |
|
121 |
+
Epoch Training Loss Validation Loss
|
122 |
+
1 0.108500 0.082612
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
|
|
124 |
|
125 |
## Model Card Contact
|
126 |
|