--- library_name: transformers license: mit base_model: w11wo/sundanese-roberta-base-emotion-classifier tags: - generated_from_trainer model-index: - name: RoBERTa-Base-Avg-SE2025T11A-sun-v20241224104615 results: [] --- # RoBERTa-Base-Avg-SE2025T11A-sun-v20241224104615 This model is a fine-tuned version of [w11wo/sundanese-roberta-base-emotion-classifier](https://huggingface.co/w11wo/sundanese-roberta-base-emotion-classifier) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3618 - eval_model_preparation_time: 0.0032 - eval_f1_micro: 0.6933 - eval_f1_macro: 0.3543 - eval_f1_label_marah: 0.1538 - eval_f1_label_jijik: 0.2222 - eval_f1_label_takut: 0.0 - eval_f1_label_senang: 0.8763 - eval_f1_label_sedih: 0.6667 - eval_f1_label_terkejut: 0.3111 - eval_f1_label_biasa: 0.25 - eval_runtime: 1.8475 - eval_samples_per_second: 69.282 - eval_steps_per_second: 34.641 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0