--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: XLM-RoBERTa-Base-Sundanese-Emotion-Classifier-v20241222170134 results: [] --- # XLM-RoBERTa-Base-Sundanese-Emotion-Classifier-v20241222170134 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0177 - Accuracy: 1.0 - F1 Micro: 1.0 - F1 Macro: 1.0 - F1 Weighted: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:| | 1.0664 | 2.5 | 100 | 0.4432 | 0.9167 | 0.9167 | 0.9143 | 0.9143 | | 0.4356 | 5.0 | 200 | 0.1068 | 0.9167 | 0.9167 | 0.9143 | 0.9143 | | 0.19 | 7.5 | 300 | 0.0109 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.1069 | 10.0 | 400 | 0.0090 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0