File size: 1,972 Bytes
2fe677d
 
 
 
 
 
 
 
 
 
cc2baeb
 
2fe677d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2baeb
2fe677d
 
cc2baeb
 
 
 
 
 
 
2fe677d
 
 
 
 
 
 
 
 
cc2baeb
 
 
 
 
2fe677d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88724c8
2fe677d
 
 
 
 
 
 
 
88724c8
2fe677d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---

license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: resnet-50-finetuned-FBark
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.9699498746867168
    - name: Recall
      type: recall
      value: 0.9778787878787879
    - name: F1
      type: f1
      value: 0.9734665458141067
    - name: Accuracy
      type: accuracy
      value: 0.9719626168224299
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet-50-finetuned-FBark

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1079
- Precision: 0.9699
- Recall: 0.9779
- F1: 0.9735
- Accuracy: 0.9720

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 35

### Training results



### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.0+cpu
- Datasets 2.19.0
- Tokenizers 0.15.1