File size: 1,972 Bytes
2fe677d cc2baeb 2fe677d cc2baeb 2fe677d cc2baeb 2fe677d cc2baeb 2fe677d 88724c8 2fe677d 88724c8 2fe677d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: resnet-50-finetuned-FBark
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Precision
type: precision
value: 0.9699498746867168
- name: Recall
type: recall
value: 0.9778787878787879
- name: F1
type: f1
value: 0.9734665458141067
- name: Accuracy
type: accuracy
value: 0.9719626168224299
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-finetuned-FBark
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1079
- Precision: 0.9699
- Recall: 0.9779
- F1: 0.9735
- Accuracy: 0.9720
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 35
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.0+cpu
- Datasets 2.19.0
- Tokenizers 0.15.1
|