Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1471.60 +/- 79.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12700464f331242052e8765db5dcb241339485fef50ae83bae2f6953386eda57
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9457b60b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9457b60c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9457b60ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9457b60d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9457b60dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9457b60e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9457b60ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9457b60f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9457b61000>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9457b61090>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9457b61120>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9457b611b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9457b57f80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1684511038207098402,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOF6jT9jsbo+Iac5P/f4sD91ZxQ/hBECwAKPVD8A49+/RvpeP6AoyL9xPos/1oIQPwmJyD76RRdA53ZuPnUxE79a6GS+567sPwctnD9awEZALiCqvYk+T7/w5dW+5qGMP8xu3L+yRpg+liS5vzakX7/xhM0/k2grv5nZ+b2hG9g+S+78v0Tltb3x7ga/1y6Yv1RdwT8/1tY6JzHYP1mLFr/DdqK/vVM8PwWaZD2iRxbAnYOmv6o/Fb+KuuO+WIIWvolkuL5SK6g/xVl9v21Sf8AspxQ/skaYPtP8MD82pF+/A1uovcugLj98Y1g/NxyzP0essz/DPZG+beUSvuQAK7/13dC/GkZcuro1qz16PC8/KjypP5znpb+TvSg/8tqpu/A9zj9EFYy+P7nIPgySWL9hwRk8lFG8v3ibkz+WNhA/zG7cv7JGmD6WJLm/LoWSP97/nD/nnSk8j4kHP/hzoz6mZaq/7kCWP0Qax77QJMC/0rjBPyjDiLzvQwtAdaMZv3VZTL9XSsK/rkkYPyLvab9O4yS/I8Kpv8RC17xtFbc6M6ktv+XroD/X15I/znkkwCynFD+yRpg+0/wwPzakX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAflaa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8g10vAAAAAAgKtq/AAAAACdoOL0AAAAAk5D4PwAAAAA6Vmq9AAAAAMSF9z8AAAAAcHEGvQAAAAA24Oy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArxPfNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPAGlL0AAAAA63TwvwAAAABNI2G5AAAAACl/6j8AAAAAcRGrPQAAAABuA/c/AAAAACjjBT4AAAAAd03nvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHg3zrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJsxI9AAAAAPz3+b8AAAAAoPuUvQAAAADHnfk/AAAAABsoir0AAAAANkz6PwAAAABRq7E9AAAAAGbR9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjRCC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAizDkPQAAAADR3Nm/AAAAALJP3ToAAAAAAAXZPwAAAAB/Q049AAAAALPo3T8AAAAA9FlDPQAAAAAuNf2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBlkBGx2SuMAWyUTegDjAF0lEdArX3QyhzvJHV9lChoBkdAoDSbmr8zh2gHTegDaAhHQK1+589fTkR1fZQoaAZHQJ6VzwnYxtZoB03oA2gIR0CthYAmReTndX2UKGgGR0CcTTR51Ng0aAdN6ANoCEdArYdIeo1k2HV9lChoBkdAmIhZ66asqGgHTegDaAhHQK2K8q4pc5d1fZQoaAZHQJNp/VjI7vJoB03oA2gIR0Cti6pe/pMYdX2UKGgGR0Ca21j6vaDgaAdN6ANoCEdArZIpwOvt+nV9lChoBkdAm5TExyn1nWgHTegDaAhHQK2ULXwsoUl1fZQoaAZHQJxXxoqTbFloB03oA2gIR0CtmbD4593KdX2UKGgGR0CdO05nDiwTaAdN6ANoCEdArZrHOyE+PnV9lChoBkdAm9Zq5Xlr/WgHTegDaAhHQK2h4oIfKZF1fZQoaAZHQJtpq1NQCS1oB03oA2gIR0Cto6ovrWy1dX2UKGgGR0CZtn3Kji4saAdN6ANoCEdAraczROUMX3V9lChoBkdAmU74e9zwMGgHTegDaAhHQK2n5yd4FA51fZQoaAZHQJmf/oePq9poB03oA2gIR0CtrjEn9ehPdX2UKGgGR0CWyQw++ueSaAdN6ANoCEdAra/3yAhB7nV9lChoBkdAmVLcABDG+GgHTegDaAhHQK20vBE8aGZ1fZQoaAZHQJdkEG9pRGdoB03oA2gIR0Cttdum78NydX2UKGgGR0CZd/z9jwx4aAdN6ANoCEdArb2U81XNknV9lChoBkdAmStsfNiYs2gHTegDaAhHQK2/PMEidJ91fZQoaAZHQJk7tKnNxERoB03oA2gIR0CtwreqBErodX2UKGgGR0CaQ+I4lyBDaAdN6ANoCEdArcNpdjXnQ3V9lChoBkdAmJVXjENvwWgHTegDaAhHQK3JpFFUhmp1fZQoaAZHQJjuViONo8JoB03oA2gIR0Cty11RtP56dX2UKGgGR0Ca3sZkkKNRaAdN6ANoCEdArc9DSy+pO3V9lChoBkdAm/ghMSK3u2gHTegDaAhHQK3QR/+bVjJ1fZQoaAZHQJLDxF9a2WpoB03oA2gIR0Ct2vrG7z06dX2UKGgGR0CQNSl2/zreaAdN6ANoCEdArd2aCvovBnV9lChoBkdAhOo0R3/xUmgHTegDaAhHQK3htHCGetl1fZQoaAZHQHjiW1YyO7xoB03oA2gIR0Ct4m50Syt3dX2UKGgGR0CG4julXRw7aAdN6ANoCEdAreixkNFz+3V9lChoBkdAeEYlFMIu5GgHTegDaAhHQK3qZ4AS39d1fZQoaAZHQGlWmPPszEdoB03oA2gIR0Ct7fCK77KrdX2UKGgGR0CQknu5z5oHaAdN6ANoCEdAre70/yGzr3V9lChoBkdAmOD0i2UjcGgHTegDaAhHQK34Ec3l0YF1fZQoaAZHQJhhGBf8dghoB03oA2gIR0Ct+c6dMCcPdX2UKGgGR0CP2rQ3PzFuaAdN6ANoCEdArf1e9vjwQXV9lChoBkdAm+KsTWXkYGgHTegDaAhHQK3+ENzbN8p1fZQoaAZHQJqtxocrAgxoB03oA2gIR0CuBEUTL4etdX2UKGgGR0CanG9LYf4iaAdN6ANoCEdArgX/FPznR3V9lChoBkdAnSLtK7I1cmgHTegDaAhHQK4JgqaPS2J1fZQoaAZHQJwdZ0Syt3hoB03oA2gIR0CuCjXCj1wpdX2UKGgGR0Cc7rvS+g14aAdN6ANoCEdArhNPeN1hcHV9lChoBkdAnP92ilBQemgHTegDaAhHQK4VcaisXBR1fZQoaAZHQJsBu0D2alVoB03oA2gIR0CuGQIb4rSWdX2UKGgGR0CZx3A8jiXIaAdN6ANoCEdArhm4HX2/SHV9lChoBkdAmyrZhnanJmgHTegDaAhHQK4gVtzCDVZ1fZQoaAZHQJ7vHQzDXOJoB03oA2gIR0CuIh+QEIPcdX2UKGgGR0CcaPz7/GVBaAdN6ANoCEdAriXHpr1ui3V9lChoBkdAmYjm9cry2GgHTegDaAhHQK4mg/j81oB1fZQoaAZHQJT5uiGnGbVoB03oA2gIR0CuL3cSXdCWdX2UKGgGR0CYzDxVyWAxaAdN6ANoCEdArjIpKBd2PnV9lChoBkdAlVKlijL0SWgHTegDaAhHQK410b8WKuV1fZQoaAZHQJPBC59Vmz1oB03oA2gIR0CuNo2tEG7jdX2UKGgGR0CXOrPUrkKeaAdN6ANoCEdArjzt/z8P4HV9lChoBkdAk1Qkq+ajOGgHTegDaAhHQK4+tNzKcNJ1fZQoaAZHQJqrMCwKSgZoB03oA2gIR0CuQkk0Jng6dX2UKGgGR0CYJCiONo8IaAdN6ANoCEdArkL9j0+TvHV9lChoBkdAjfaeZw4sE2gHTegDaAhHQK5LeCtihFp1fZQoaAZHQJYZJMajveBoB03oA2gIR0CuTlxoh6jWdX2UKGgGR0CT5DWv8qFzaAdN6ANoCEdArlKIcWCVbHV9lChoBkdAmCyt6LOzIGgHTegDaAhHQK5TSJuVHFx1fZQoaAZHQJlpncqOLixoB03oA2gIR0CuWg1LzwtrdX2UKGgGR0Cbc5HNHH3laAdN6ANoCEdArlvhKg7HQ3V9lChoBkdAl2UYRAbADmgHTegDaAhHQK5fdGxUvPF1fZQoaAZHQJbmjOiWVu9oB03oA2gIR0CuYCaZ6UqydX2UKGgGR0CYYMK8+RozaAdN6ANoCEdArmhUDlo11nV9lChoBkdAmJWuEAYHgWgHTegDaAhHQK5rIGkep4t1fZQoaAZHQJaurY150KZoB03oA2gIR0Cub3MPSUkfdX2UKGgGR0CatlMCLdeqaAdN6ANoCEdArnAweDFqBXV9lChoBkdAmcESt3fQ8mgHTegDaAhHQK52yBTXJ5p1fZQoaAZHQJjKkcYIjW1oB03oA2gIR0CueK8slLOBdX2UKGgGR0CY6tP2f02+aAdN6ANoCEdArnxiGYa5w3V9lChoBkdAmEE8/+sHSmgHTegDaAhHQK59Gx7iQ1d1fZQoaAZHQJqBz4qPOptoB03oA2gIR0CuhN8vEjxDdX2UKGgGR0CcU2m/FirlaAdN6ANoCEdAroe464lQdnV9lChoBkdAmuiIPf8/EGgHTegDaAhHQK6McuK4x1x1fZQoaAZHQJzmyAG0NSZoB03oA2gIR0CujS+YD1XedX2UKGgGR0CZ4UiblRxcaAdN6ANoCEdArpO73bmEG3V9lChoBkdAnMAFGb1AaGgHTegDaAhHQK6Ve6OHWSV1fZQoaAZHQJxeeJKraM9oB03oA2gIR0CumRkHlfZ3dX2UKGgGR0Cc30O8TSLJaAdN6ANoCEdArpnUXHim23V9lChoBkdAnP5DufEn9mgHTegDaAhHQK6hWbCJoCd1fZQoaAZHQJ3EcJQcghdoB03oA2gIR0CupDD3Ehq1dX2UKGgGR0Cc/RdJrcj8aAdN6ANoCEdArqkYeV9nb3V9lChoBkdAnadUgSvkimgHTegDaAhHQK6pyXSBshx1fZQoaAZHQJq2kV+I/JNoB03oA2gIR0CusFFiz9jxdX2UKGgGR0CZTj1UlzEKaAdN6ANoCEdArrIv1pTMq3V9lChoBkdAmm9vW6K+BmgHTegDaAhHQK618Ma0hNd1fZQoaAZHQJqQDLV4HHFoB03oA2gIR0CutqdA5aNddX2UKGgGR0CaqdIsRQJpaAdN6ANoCEdArr20jxCpm3V9lChoBkdAm2uPbfxc3WgHTegDaAhHQK7AYbz9S/F1fZQoaAZHQJwRPbypaRpoB03oA2gIR0CuxZTyjHn2dX2UKGgGR0Cb6sYLsruqaAdN6ANoCEdArsZIvrWy1XV9lChoBkdAndLLoB7u2WgHTegDaAhHQK7MqdBBzFN1fZQoaAZHQJ1WzxDst05oB03oA2gIR0CuznOvECNkdX2UKGgGR0CanmX0oSctaAdN6ANoCEdArtIJ5AyEc3V9lChoBkdAlXD/rv9cbGgHTegDaAhHQK7SwFpwjt51fZQoaAZHQJbG0f6oESxoB03oA2gIR0Cu2UzbeuV5dX2UKGgGR0CZe+3o9s7/aAdN6ANoCEdArtvP9ehPCXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8f9f6e11ecf7922ccbbcdde598781ec89e780d9a2533a4c2e6ec36afe7414d0
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9524e92c30e8d39fc1a54d86f568feb906974dc9a6f301581d81784e8589b390
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9457b60b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9457b60c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9457b60ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9457b60d30>", "_build": "<function ActorCriticPolicy._build at 0x7f9457b60dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9457b60e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9457b60ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9457b60f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9457b61000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9457b61090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9457b61120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9457b611b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9457b57f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684511038207098402, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOF6jT9jsbo+Iac5P/f4sD91ZxQ/hBECwAKPVD8A49+/RvpeP6AoyL9xPos/1oIQPwmJyD76RRdA53ZuPnUxE79a6GS+567sPwctnD9awEZALiCqvYk+T7/w5dW+5qGMP8xu3L+yRpg+liS5vzakX7/xhM0/k2grv5nZ+b2hG9g+S+78v0Tltb3x7ga/1y6Yv1RdwT8/1tY6JzHYP1mLFr/DdqK/vVM8PwWaZD2iRxbAnYOmv6o/Fb+KuuO+WIIWvolkuL5SK6g/xVl9v21Sf8AspxQ/skaYPtP8MD82pF+/A1uovcugLj98Y1g/NxyzP0essz/DPZG+beUSvuQAK7/13dC/GkZcuro1qz16PC8/KjypP5znpb+TvSg/8tqpu/A9zj9EFYy+P7nIPgySWL9hwRk8lFG8v3ibkz+WNhA/zG7cv7JGmD6WJLm/LoWSP97/nD/nnSk8j4kHP/hzoz6mZaq/7kCWP0Qax77QJMC/0rjBPyjDiLzvQwtAdaMZv3VZTL9XSsK/rkkYPyLvab9O4yS/I8Kpv8RC17xtFbc6M6ktv+XroD/X15I/znkkwCynFD+yRpg+0/wwPzakX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAflaa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8g10vAAAAAAgKtq/AAAAACdoOL0AAAAAk5D4PwAAAAA6Vmq9AAAAAMSF9z8AAAAAcHEGvQAAAAA24Oy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArxPfNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPAGlL0AAAAA63TwvwAAAABNI2G5AAAAACl/6j8AAAAAcRGrPQAAAABuA/c/AAAAACjjBT4AAAAAd03nvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHg3zrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJsxI9AAAAAPz3+b8AAAAAoPuUvQAAAADHnfk/AAAAABsoir0AAAAANkz6PwAAAABRq7E9AAAAAGbR9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjRCC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAizDkPQAAAADR3Nm/AAAAALJP3ToAAAAAAAXZPwAAAAB/Q049AAAAALPo3T8AAAAA9FlDPQAAAAAuNf2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBlkBGx2SuMAWyUTegDjAF0lEdArX3QyhzvJHV9lChoBkdAoDSbmr8zh2gHTegDaAhHQK1+589fTkR1fZQoaAZHQJ6VzwnYxtZoB03oA2gIR0CthYAmReTndX2UKGgGR0CcTTR51Ng0aAdN6ANoCEdArYdIeo1k2HV9lChoBkdAmIhZ66asqGgHTegDaAhHQK2K8q4pc5d1fZQoaAZHQJNp/VjI7vJoB03oA2gIR0Cti6pe/pMYdX2UKGgGR0Ca21j6vaDgaAdN6ANoCEdArZIpwOvt+nV9lChoBkdAm5TExyn1nWgHTegDaAhHQK2ULXwsoUl1fZQoaAZHQJxXxoqTbFloB03oA2gIR0CtmbD4593KdX2UKGgGR0CdO05nDiwTaAdN6ANoCEdArZrHOyE+PnV9lChoBkdAm9Zq5Xlr/WgHTegDaAhHQK2h4oIfKZF1fZQoaAZHQJtpq1NQCS1oB03oA2gIR0Cto6ovrWy1dX2UKGgGR0CZtn3Kji4saAdN6ANoCEdAraczROUMX3V9lChoBkdAmU74e9zwMGgHTegDaAhHQK2n5yd4FA51fZQoaAZHQJmf/oePq9poB03oA2gIR0CtrjEn9ehPdX2UKGgGR0CWyQw++ueSaAdN6ANoCEdAra/3yAhB7nV9lChoBkdAmVLcABDG+GgHTegDaAhHQK20vBE8aGZ1fZQoaAZHQJdkEG9pRGdoB03oA2gIR0Cttdum78NydX2UKGgGR0CZd/z9jwx4aAdN6ANoCEdArb2U81XNknV9lChoBkdAmStsfNiYs2gHTegDaAhHQK2/PMEidJ91fZQoaAZHQJk7tKnNxERoB03oA2gIR0CtwreqBErodX2UKGgGR0CaQ+I4lyBDaAdN6ANoCEdArcNpdjXnQ3V9lChoBkdAmJVXjENvwWgHTegDaAhHQK3JpFFUhmp1fZQoaAZHQJjuViONo8JoB03oA2gIR0Cty11RtP56dX2UKGgGR0Ca3sZkkKNRaAdN6ANoCEdArc9DSy+pO3V9lChoBkdAm/ghMSK3u2gHTegDaAhHQK3QR/+bVjJ1fZQoaAZHQJLDxF9a2WpoB03oA2gIR0Ct2vrG7z06dX2UKGgGR0CQNSl2/zreaAdN6ANoCEdArd2aCvovBnV9lChoBkdAhOo0R3/xUmgHTegDaAhHQK3htHCGetl1fZQoaAZHQHjiW1YyO7xoB03oA2gIR0Ct4m50Syt3dX2UKGgGR0CG4julXRw7aAdN6ANoCEdAreixkNFz+3V9lChoBkdAeEYlFMIu5GgHTegDaAhHQK3qZ4AS39d1fZQoaAZHQGlWmPPszEdoB03oA2gIR0Ct7fCK77KrdX2UKGgGR0CQknu5z5oHaAdN6ANoCEdAre70/yGzr3V9lChoBkdAmOD0i2UjcGgHTegDaAhHQK34Ec3l0YF1fZQoaAZHQJhhGBf8dghoB03oA2gIR0Ct+c6dMCcPdX2UKGgGR0CP2rQ3PzFuaAdN6ANoCEdArf1e9vjwQXV9lChoBkdAm+KsTWXkYGgHTegDaAhHQK3+ENzbN8p1fZQoaAZHQJqtxocrAgxoB03oA2gIR0CuBEUTL4etdX2UKGgGR0CanG9LYf4iaAdN6ANoCEdArgX/FPznR3V9lChoBkdAnSLtK7I1cmgHTegDaAhHQK4JgqaPS2J1fZQoaAZHQJwdZ0Syt3hoB03oA2gIR0CuCjXCj1wpdX2UKGgGR0Cc7rvS+g14aAdN6ANoCEdArhNPeN1hcHV9lChoBkdAnP92ilBQemgHTegDaAhHQK4VcaisXBR1fZQoaAZHQJsBu0D2alVoB03oA2gIR0CuGQIb4rSWdX2UKGgGR0CZx3A8jiXIaAdN6ANoCEdArhm4HX2/SHV9lChoBkdAmyrZhnanJmgHTegDaAhHQK4gVtzCDVZ1fZQoaAZHQJ7vHQzDXOJoB03oA2gIR0CuIh+QEIPcdX2UKGgGR0CcaPz7/GVBaAdN6ANoCEdAriXHpr1ui3V9lChoBkdAmYjm9cry2GgHTegDaAhHQK4mg/j81oB1fZQoaAZHQJT5uiGnGbVoB03oA2gIR0CuL3cSXdCWdX2UKGgGR0CYzDxVyWAxaAdN6ANoCEdArjIpKBd2PnV9lChoBkdAlVKlijL0SWgHTegDaAhHQK410b8WKuV1fZQoaAZHQJPBC59Vmz1oB03oA2gIR0CuNo2tEG7jdX2UKGgGR0CXOrPUrkKeaAdN6ANoCEdArjzt/z8P4HV9lChoBkdAk1Qkq+ajOGgHTegDaAhHQK4+tNzKcNJ1fZQoaAZHQJqrMCwKSgZoB03oA2gIR0CuQkk0Jng6dX2UKGgGR0CYJCiONo8IaAdN6ANoCEdArkL9j0+TvHV9lChoBkdAjfaeZw4sE2gHTegDaAhHQK5LeCtihFp1fZQoaAZHQJYZJMajveBoB03oA2gIR0CuTlxoh6jWdX2UKGgGR0CT5DWv8qFzaAdN6ANoCEdArlKIcWCVbHV9lChoBkdAmCyt6LOzIGgHTegDaAhHQK5TSJuVHFx1fZQoaAZHQJlpncqOLixoB03oA2gIR0CuWg1LzwtrdX2UKGgGR0Cbc5HNHH3laAdN6ANoCEdArlvhKg7HQ3V9lChoBkdAl2UYRAbADmgHTegDaAhHQK5fdGxUvPF1fZQoaAZHQJbmjOiWVu9oB03oA2gIR0CuYCaZ6UqydX2UKGgGR0CYYMK8+RozaAdN6ANoCEdArmhUDlo11nV9lChoBkdAmJWuEAYHgWgHTegDaAhHQK5rIGkep4t1fZQoaAZHQJaurY150KZoB03oA2gIR0Cub3MPSUkfdX2UKGgGR0CatlMCLdeqaAdN6ANoCEdArnAweDFqBXV9lChoBkdAmcESt3fQ8mgHTegDaAhHQK52yBTXJ5p1fZQoaAZHQJjKkcYIjW1oB03oA2gIR0CueK8slLOBdX2UKGgGR0CY6tP2f02+aAdN6ANoCEdArnxiGYa5w3V9lChoBkdAmEE8/+sHSmgHTegDaAhHQK59Gx7iQ1d1fZQoaAZHQJqBz4qPOptoB03oA2gIR0CuhN8vEjxDdX2UKGgGR0CcU2m/FirlaAdN6ANoCEdAroe464lQdnV9lChoBkdAmuiIPf8/EGgHTegDaAhHQK6McuK4x1x1fZQoaAZHQJzmyAG0NSZoB03oA2gIR0CujS+YD1XedX2UKGgGR0CZ4UiblRxcaAdN6ANoCEdArpO73bmEG3V9lChoBkdAnMAFGb1AaGgHTegDaAhHQK6Ve6OHWSV1fZQoaAZHQJxeeJKraM9oB03oA2gIR0CumRkHlfZ3dX2UKGgGR0Cc30O8TSLJaAdN6ANoCEdArpnUXHim23V9lChoBkdAnP5DufEn9mgHTegDaAhHQK6hWbCJoCd1fZQoaAZHQJ3EcJQcghdoB03oA2gIR0CupDD3Ehq1dX2UKGgGR0Cc/RdJrcj8aAdN6ANoCEdArqkYeV9nb3V9lChoBkdAnadUgSvkimgHTegDaAhHQK6pyXSBshx1fZQoaAZHQJq2kV+I/JNoB03oA2gIR0CusFFiz9jxdX2UKGgGR0CZTj1UlzEKaAdN6ANoCEdArrIv1pTMq3V9lChoBkdAmm9vW6K+BmgHTegDaAhHQK618Ma0hNd1fZQoaAZHQJqQDLV4HHFoB03oA2gIR0CutqdA5aNddX2UKGgGR0CaqdIsRQJpaAdN6ANoCEdArr20jxCpm3V9lChoBkdAm2uPbfxc3WgHTegDaAhHQK7AYbz9S/F1fZQoaAZHQJwRPbypaRpoB03oA2gIR0CuxZTyjHn2dX2UKGgGR0Cb6sYLsruqaAdN6ANoCEdArsZIvrWy1XV9lChoBkdAndLLoB7u2WgHTegDaAhHQK7MqdBBzFN1fZQoaAZHQJ1WzxDst05oB03oA2gIR0CuznOvECNkdX2UKGgGR0CanmX0oSctaAdN6ANoCEdArtIJ5AyEc3V9lChoBkdAlXD/rv9cbGgHTegDaAhHQK7SwFpwjt51fZQoaAZHQJbG0f6oESxoB03oA2gIR0Cu2UzbeuV5dX2UKGgGR0CZe+3o9s7/aAdN6ANoCEdArtvP9ehPCXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8eda654f87354a450cdd7e0a94623d725fba11f13241357d8020564a8a73633c
|
3 |
+
size 1186413
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1471.600695162965, "std_reward": 79.22810813748997, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-19T16:45:42.416967"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b40e87f382df1d84b7172d9bc4a3b2fc81c586a40804c5cc6bd196001153048
|
3 |
+
size 2176
|