File size: 1,233 Bytes
3d7af40 d06f64b 6686bbd e8d285b a5675d3 3d7af40 d06f64b 3d7af40 e8d285b 3d7af40 77beb51 3d7af40 e8d285b 3d7af40 6127b9f 3d7af40 e8d285b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
---
license: mit
language:
- en
datasets: climate_fever
tags:
- fact-checking
- climate
- text entailment
---
This model fine-tuned [ClimateBert](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the textual entailment task using Climate FEVER data. Given (claim, evidence) pairs, the model predicts support (entailment), refute (contradict), or not enough info (neutral). The model has 67% validation accuracy.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained("amandakonet/climatebert-fact-checking")
tokenizer = AutoTokenizer.from_pretrained("amandakonet/climatebert-fact-checking")
features = tokenizer(['Beginning in 2005, however, polar ice modestly receded for several years'],
['Polar Discovery "Continued Sea Ice Decline in 2005'],
padding='max_length', truncation=True, return_tensors="pt", max_length=512)
model.eval()
with torch.no_grad():
scores = model(**features).logits
label_mapping = ['entailment', 'contradiction', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
print(labels)
``` |