amannagrawall002 commited on
Commit
8e5e349
·
1 Parent(s): a6f9565

Auto-generated model card.

Browse files
Files changed (2) hide show
  1. README.md +119 -0
  2. model_card.py +90 -0
README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ language: en
4
+ tags:
5
+ - bert-finetuned-mrpc
6
+ - sequence-classification
7
+ license: unknown
8
+ ---
9
+
10
+ # Bert-finetuned-mrpc Fine-tuned for Sequence classification
11
+
12
+ This model is a fine-tuned version of [bert-finetuned-mrpc](https://huggingface.co/bert-finetuned-mrpc) for sequence classification tasks.
13
+
14
+ ## Model description
15
+
16
+ - Model architecture: BertForSequenceClassification
17
+ - Task: sequence-classification
18
+ - Training dataset: bert-finetuned-mrpc
19
+ - Number of parameters: 109,483,778
20
+ - Sequence length: 512
21
+ - Vocab size: 30522
22
+ - Hidden size: 768
23
+ - Number of attention heads: 12
24
+ - Number of hidden layers: 12
25
+
26
+ ## Intended uses & limitations
27
+
28
+ This model is intended for sequence classification tasks. It has been fine-tuned on a specific dataset, so its performance may vary on different datasets or domains.
29
+
30
+ ## Training procedure
31
+
32
+ The model was fine-tuned using the following hyperparameters:
33
+ {
34
+ "return_dict": true,
35
+ "output_hidden_states": false,
36
+ "output_attentions": false,
37
+ "torchscript": false,
38
+ "torch_dtype": "float32",
39
+ "use_bfloat16": false,
40
+ "tf_legacy_loss": false,
41
+ "pruned_heads": {},
42
+ "tie_word_embeddings": true,
43
+ "chunk_size_feed_forward": 0,
44
+ "is_encoder_decoder": false,
45
+ "is_decoder": false,
46
+ "cross_attention_hidden_size": null,
47
+ "add_cross_attention": false,
48
+ "tie_encoder_decoder": false,
49
+ "max_length": 20,
50
+ "min_length": 0,
51
+ "do_sample": false,
52
+ "early_stopping": false,
53
+ "num_beams": 1,
54
+ "num_beam_groups": 1,
55
+ "diversity_penalty": 0.0,
56
+ "temperature": 1.0,
57
+ "top_k": 50,
58
+ "top_p": 1.0,
59
+ "typical_p": 1.0,
60
+ "repetition_penalty": 1.0,
61
+ "length_penalty": 1.0,
62
+ "no_repeat_ngram_size": 0,
63
+ "encoder_no_repeat_ngram_size": 0,
64
+ "bad_words_ids": null,
65
+ "num_return_sequences": 1,
66
+ "output_scores": false,
67
+ "return_dict_in_generate": false,
68
+ "forced_bos_token_id": null,
69
+ "forced_eos_token_id": null,
70
+ "remove_invalid_values": false,
71
+ "exponential_decay_length_penalty": null,
72
+ "suppress_tokens": null,
73
+ "begin_suppress_tokens": null,
74
+ "architectures": [
75
+ "BertForSequenceClassification"
76
+ ],
77
+ "finetuning_task": null,
78
+ "id2label": {
79
+ "0": "LABEL_0",
80
+ "1": "LABEL_1"
81
+ },
82
+ "label2id": {
83
+ "LABEL_0": 0,
84
+ "LABEL_1": 1
85
+ },
86
+ "tokenizer_class": null,
87
+ "prefix": null,
88
+ "bos_token_id": null,
89
+ "pad_token_id": 0,
90
+ "eos_token_id": null,
91
+ "sep_token_id": null,
92
+ "decoder_start_token_id": null,
93
+ "task_specific_params": null,
94
+ "problem_type": "single_label_classification",
95
+ "_name_or_path": "bert-finetuned-mrpc",
96
+ "transformers_version": "4.38.1",
97
+ "gradient_checkpointing": false,
98
+ "model_type": "bert",
99
+ "vocab_size": 30522,
100
+ "hidden_size": 768,
101
+ "num_hidden_layers": 12,
102
+ "num_attention_heads": 12,
103
+ "hidden_act": "gelu",
104
+ "intermediate_size": 3072,
105
+ "hidden_dropout_prob": 0.1,
106
+ "attention_probs_dropout_prob": 0.1,
107
+ "max_position_embeddings": 512,
108
+ "type_vocab_size": 2,
109
+ "initializer_range": 0.02,
110
+ "layer_norm_eps": 1e-12,
111
+ "position_embedding_type": "absolute",
112
+ "use_cache": true,
113
+ "classifier_dropout": null
114
+ }
115
+
116
+ ## Evaluation results
117
+
118
+ [Evaluation results to be added]
119
+
model_card.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import Repository, HfApi
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
3
+ import json
4
+
5
+ # Initialize the Hugging Face API client
6
+ api = HfApi()
7
+
8
+ # Use the existing local repository
9
+ repo = Repository("local-folder")
10
+ repo.git_pull()
11
+
12
+ # Load the model, tokenizer, and config from the existing checkpoint
13
+ checkpoint_directory = "bert-finetuned-mrpc"
14
+ model = AutoModelForSequenceClassification.from_pretrained(checkpoint_directory)
15
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint_directory)
16
+ config = AutoConfig.from_pretrained(checkpoint_directory)
17
+
18
+ # Get the repository name
19
+ repo_name = "amannagrawall002/bert-finetued-mrpc" # Replace this with your actual repository name
20
+
21
+ # Generate model card content
22
+ model_name = config.name_or_path.split('/')[-1]
23
+ task = list(config.task_specific_params.keys())[0] if hasattr(config, 'task_specific_params') and config.task_specific_params else "sequence-classification"
24
+ architecture = config.architectures[0] if hasattr(config, 'architectures') and config.architectures else "Unknown"
25
+
26
+ model_card_content = f"""
27
+ ---
28
+ language: en
29
+ tags:
30
+ - {model_name}
31
+ - {task}
32
+ license: {config.license if hasattr(config, 'license') else 'unknown'}
33
+ ---
34
+
35
+ # {model_name.capitalize()} Fine-tuned for {task.replace('-', ' ').capitalize()}
36
+
37
+ This model is a fine-tuned version of [{model_name}](https://huggingface.co/{config.name_or_path}) for {task.replace('-', ' ')} tasks.
38
+
39
+ ## Model description
40
+
41
+ - Model architecture: {architecture}
42
+ - Task: {task}
43
+ - Training dataset: {config._name_or_path if hasattr(config, '_name_or_path') else 'Unknown'}
44
+ - Number of parameters: {model.num_parameters():,}
45
+ - Sequence length: {config.max_position_embeddings}
46
+ - Vocab size: {config.vocab_size}
47
+ - Hidden size: {config.hidden_size}
48
+ - Number of attention heads: {config.num_attention_heads}
49
+ - Number of hidden layers: {config.num_hidden_layers}
50
+
51
+ ## Intended uses & limitations
52
+
53
+ This model is intended for {task.replace('-', ' ')} tasks. It has been fine-tuned on a specific dataset, so its performance may vary on different datasets or domains.
54
+
55
+ ## Training procedure
56
+
57
+ The model was fine-tuned using the following hyperparameters:
58
+ {json.dumps(config.to_dict(), indent=2)}
59
+
60
+ ## Evaluation results
61
+
62
+ [Evaluation results to be added]
63
+
64
+ """
65
+
66
+ with open(f"{repo.local_dir}/README.md", "w") as f:
67
+ f.write(model_card_content)
68
+
69
+ # Add inference API code
70
+ # pipeline_code = f"""
71
+ # from transformers import pipeline
72
+
73
+ # def inference(text):
74
+ # classifier = pipeline("{task}", model="{repo_name}")
75
+ # result = classifier(text)
76
+ # return result
77
+ # """
78
+
79
+ # with open(f"{repo.local_dir}/api.py", "w") as f:
80
+ # f.write(pipeline_code)
81
+
82
+ # Commit and push changes
83
+ repo.git_add()
84
+ repo.git_commit("Added auto-generated model card")
85
+ repo.git_push()
86
+
87
+ # Enable the Inference API
88
+ # api.add_space_secret(repo_name, "INFERENCE_ENDPOINT", f"https://api-inference.huggingface.co/models/{repo_name}")
89
+
90
+ print("Auto-generated model card.")