File size: 15,599 Bytes
bc887b7
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3e97bc9090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3e97bd1440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 398580, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685238426526340815, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAr69Kvx3NGz2udeu+XPi3vrTIgD6k0FE9eKYOvqKk173+6xW/GXFJP/RCRr3ZYEG/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL+KCv0ur573pNh6/JK0Wv5Gakj6Hv4K+E2qwvqra/b7s84K/9ultPza4Vb6C1ra/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACvr0q/Hc0bPa516778Wbc/g3hmP1gp9j1c+Le+tMiAPqTQUT2L4BA/EpizPyQwGL54pg6+oqTXvf7rFb/z5nu/UEeZvhy83r4ZcUk/9EJGvdlgQb/NZry8UCd5PrpsqT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.7917432   0.03803741 -0.4598822 ]\n [-0.3593167   0.25153124  0.05122437]\n [-0.1393069  -0.10529448 -0.5856322 ]\n [ 0.786882   -0.0484037  -0.755384  ]]", "desired_goal": "[[-1.0225276  -0.11311968 -0.61802536]\n [-0.5885794   0.2863355  -0.2553675 ]\n [-0.34455928 -0.4958089  -1.0230689 ]\n [ 0.9293512  -0.20871052 -1.4284213 ]]", "observation": "[[-0.7917432   0.03803741 -0.4598822   1.4324336   0.90027636  0.12019604]\n [-0.3593167   0.25153124  0.05122437  0.56592625  1.4030783  -0.14862114]\n [-0.1393069  -0.10529448 -0.5856322  -0.98399276 -0.2993722  -0.4350289 ]\n [ 0.786882   -0.0484037  -0.755384   -0.02299824  0.24331403  0.08272691]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyq7YvbS0BD1ONms+c5g1vTd6yrtpWsk9vxDrvF7PhbrIlt49ftUQPii4lbyZ8WE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.10580213  0.03239889  0.22969934]\n [-0.04433484 -0.00617912  0.09831697]\n [-0.02869451 -0.00102089  0.10868603]\n [ 0.14143941 -0.01827629  0.22064818]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.6014200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA7Fs5pDU9r+UhpRSlIwBbJRLMowBdJRHQJGdQNAkcCJ1fZQoaAZoCWgPQwhvDAHAsQcEwJSGlFKUaBVLMmgWR0CRnIuTA31jdX2UKGgGaAloD0MIqvBneLPGAsCUhpRSlGgVSzJoFkdAkZvccZLqU3V9lChoBmgJaA9DCA3BcRk3tfS/lIaUUpRoFUsyaBZHQJGbNYlpoK51fZQoaAZoCWgPQwg0oN6Mmg8AwJSGlFKUaBVLMmgWR0CRn0+bVjI8dX2UKGgGaAloD0MIUtZvJqaL+L+UhpRSlGgVSzJoFkdAkZ6aOcUdrHV9lChoBmgJaA9DCJ62RgTjIP2/lIaUUpRoFUsyaBZHQJGd663AmAt1fZQoaAZoCWgPQwjaHyi37fvwv5SGlFKUaBVLMmgWR0CRnUUG3WnTdX2UKGgGaAloD0MIGm1VEtkH+7+UhpRSlGgVSzJoFkdAkaFB+nZTQ3V9lChoBmgJaA9DCPFJJxJMtQLAlIaUUpRoFUsyaBZHQJGgjSuyNXJ1fZQoaAZoCWgPQwiK48Cr5c4HwJSGlFKUaBVLMmgWR0CRn98G9pRGdX2UKGgGaAloD0MIFokJavhW+L+UhpRSlGgVSzJoFkdAkZ84KMNtqHV9lChoBmgJaA9DCJ9x4UBIlvO/lIaUUpRoFUsyaBZHQJGjThZQpF11fZQoaAZoCWgPQwhoPXyZKAL7v5SGlFKUaBVLMmgWR0CRopigkC3gdX2UKGgGaAloD0MI2e4eoPuy9L+UhpRSlGgVSzJoFkdAkaHpu63AmHV9lChoBmgJaA9DCF/ObFfo4wPAlIaUUpRoFUsyaBZHQJGhQw/PgNx1fZQoaAZoCWgPQwi1T8djBqoLwJSGlFKUaBVLMmgWR0CRpUXjENvwdX2UKGgGaAloD0MI3LxxUpi3+r+UhpRSlGgVSzJoFkdAkaSQtjCpFXV9lChoBmgJaA9DCJJdaRmpt/C/lIaUUpRoFUsyaBZHQJGj4rxy4nZ1fZQoaAZoCWgPQwhl4etrXSrxv5SGlFKUaBVLMmgWR0CRozyvcJt0dX2UKGgGaAloD0MI1SR4QxoVAcCUhpRSlGgVSzJoFkdAkac7wSamXXV9lChoBmgJaA9DCFuVRPZBFvm/lIaUUpRoFUsyaBZHQJGmhk078vV1fZQoaAZoCWgPQwhVaCCWzXwEwJSGlFKUaBVLMmgWR0CRpdd0q6OHdX2UKGgGaAloD0MIzojS3uArDcCUhpRSlGgVSzJoFkdAkaUwxWT5f3V9lChoBmgJaA9DCMxgjEgUGgrAlIaUUpRoFUsyaBZHQJGpMH4XXRR1fZQoaAZoCWgPQwhEpKZdTBMMwJSGlFKUaBVLMmgWR0CRqHsmfGuLdX2UKGgGaAloD0MI1ArT9xqiDMCUhpRSlGgVSzJoFkdAkafMQ/X5FnV9lChoBmgJaA9DCO7p6o7FlgLAlIaUUpRoFUsyaBZHQJGnJf1Hvtt1fZQoaAZoCWgPQwid1QJ7TIQVwJSGlFKUaBVLMmgWR0CRqyj5sTFmdX2UKGgGaAloD0MIje+LS1WaA8CUhpRSlGgVSzJoFkdAkap0FfReC3V9lChoBmgJaA9DCNJxNbIrbfe/lIaUUpRoFUsyaBZHQJGpxYyO7xx1fZQoaAZoCWgPQwgVWABTBk4OwJSGlFKUaBVLMmgWR0CRqR94u9OAdX2UKGgGaAloD0MIAgzLn2+rAsCUhpRSlGgVSzJoFkdAka0gsbvPT3V9lChoBmgJaA9DCGlSCrq9JATAlIaUUpRoFUsyaBZHQJGsa1iONo91fZQoaAZoCWgPQwjt9IO6SEEJwJSGlFKUaBVLMmgWR0CRq7yuZCv6dX2UKGgGaAloD0MIByeiX1u//r+UhpRSlGgVSzJoFkdAkasWH1vl2nV9lChoBmgJaA9DCFNaf0sAjhDAlIaUUpRoFUsyaBZHQJGvNvqC6H11fZQoaAZoCWgPQwiRYRVvZN76v5SGlFKUaBVLMmgWR0CRroIQvpQldX2UKGgGaAloD0MIs9MP6iIlAMCUhpRSlGgVSzJoFkdAka3TzZpSJnV9lChoBmgJaA9DCE0R4PQu3vu/lIaUUpRoFUsyaBZHQJGtLZUT+Nt1fZQoaAZoCWgPQwigi4aMR0kMwJSGlFKUaBVLMmgWR0CRsSvnr6cidX2UKGgGaAloD0MIxSCwcmiR7r+UhpRSlGgVSzJoFkdAkbB2WyC4BnV9lChoBmgJaA9DCG8rvTYbexDAlIaUUpRoFUsyaBZHQJGvx7NSqER1fZQoaAZoCWgPQwgpXI/C9ej/v5SGlFKUaBVLMmgWR0CRryEtNBWxdX2UKGgGaAloD0MIuMzpspgoFMCUhpRSlGgVSzJoFkdAkbMyoS+QEXV9lChoBmgJaA9DCLCSj90FagnAlIaUUpRoFUsyaBZHQJGyfW1+iJx1fZQoaAZoCWgPQwh07Qvohbv7v5SGlFKUaBVLMmgWR0CRsc8OTaCddX2UKGgGaAloD0MI1CzQ7pCi/L+UhpRSlGgVSzJoFkdAkbEodp7CznV9lChoBmgJaA9DCCBdbFopBPi/lIaUUpRoFUsyaBZHQJG1F2MbWEt1fZQoaAZoCWgPQwga3NYWnvcEwJSGlFKUaBVLMmgWR0CRtGHavicYdX2UKGgGaAloD0MI5MCr5c5M/b+UhpRSlGgVSzJoFkdAkbOy1AqusHV9lChoBmgJaA9DCHDtRElIpPm/lIaUUpRoFUsyaBZHQJGzDFzdUKl1fZQoaAZoCWgPQwjiPnJr0m37v5SGlFKUaBVLMmgWR0CRuC6rNnoQdX2UKGgGaAloD0MIqU9yh00UE8CUhpRSlGgVSzJoFkdAkbd6jBVMmHV9lChoBmgJaA9DCPInKhvW1AfAlIaUUpRoFUsyaBZHQJG2zTrmhdt1fZQoaAZoCWgPQwhOY3st6L34v5SGlFKUaBVLMmgWR0CRtieXAuZkdX2UKGgGaAloD0MIXynLEMd68r+UhpRSlGgVSzJoFkdAkbtS31BdEHV9lChoBmgJaA9DCIDVkSOdwfK/lIaUUpRoFUsyaBZHQJG6nm5lOGl1fZQoaAZoCWgPQwg4Mo/8wUD/v5SGlFKUaBVLMmgWR0CRufEpiI+GdX2UKGgGaAloD0MIOxxdpbv7EcCUhpRSlGgVSzJoFkdAkblMDW9UTHV9lChoBmgJaA9DCBPx1vm3Kw7AlIaUUpRoFUsyaBZHQJG+Vqynk1d1fZQoaAZoCWgPQwhlGHeDaG0AwJSGlFKUaBVLMmgWR0CRvaKGcnVodX2UKGgGaAloD0MIZwqd19il5r+UhpRSlGgVSzJoFkdAkbz1ZgXuV3V9lChoBmgJaA9DCMnJxK2CWBHAlIaUUpRoFUsyaBZHQJG8UEfT1Ch1fZQoaAZoCWgPQwg7U+i8xq7wv5SGlFKUaBVLMmgWR0CRwaIGhVU/dX2UKGgGaAloD0MICJJ3DmVoBsCUhpRSlGgVSzJoFkdAkcDt8uzyBnV9lChoBmgJaA9DCDI+zF623fq/lIaUUpRoFUsyaBZHQJHAQUJv5xl1fZQoaAZoCWgPQwgxXB0AcVf7v5SGlFKUaBVLMmgWR0CRv5xb0OEvdX2UKGgGaAloD0MIPpepSfBGFMCUhpRSlGgVSzJoFkdAkcUGlhw2l3V9lChoBmgJaA9DCMLbgxCQDwPAlIaUUpRoFUsyaBZHQJHEUrFwT/R1fZQoaAZoCWgPQwg/WMaGbjYEwJSGlFKUaBVLMmgWR0CRw6VHnU2DdX2UKGgGaAloD0MIgnLbvkedBMCUhpRSlGgVSzJoFkdAkcMAtapxWHV9lChoBmgJaA9DCKORzyueegnAlIaUUpRoFUsyaBZHQJHIizPa+N91fZQoaAZoCWgPQwjTTs3lBoMHwJSGlFKUaBVLMmgWR0CRx9hCtzS1dX2UKGgGaAloD0MIol7waU6e9L+UhpRSlGgVSzJoFkdAkccrutwJgXV9lChoBmgJaA9DCP+VlSal4APAlIaUUpRoFUsyaBZHQJHGhyOq//N1fZQoaAZoCWgPQwh1rFJ6pncNwJSGlFKUaBVLMmgWR0CRy//W1+iKdX2UKGgGaAloD0MInG9E96zLEcCUhpRSlGgVSzJoFkdAkctLtJFspHV9lChoBmgJaA9DCOkLIef9HwXAlIaUUpRoFUsyaBZHQJHKn1xsEaF1fZQoaAZoCWgPQwiWW1oNiTv8v5SGlFKUaBVLMmgWR0CRyfq3EyckdX2UKGgGaAloD0MI19081SH3B8CUhpRSlGgVSzJoFkdAkc4QRXfZVXV9lChoBmgJaA9DCFmJeVbSSvG/lIaUUpRoFUsyaBZHQJHNWwosqax1fZQoaAZoCWgPQwilFd9Q+Oz9v5SGlFKUaBVLMmgWR0CRzKwfhddFdX2UKGgGaAloD0MIAOZatAAtBMCUhpRSlGgVSzJoFkdAkcwFId2gWnV9lChoBmgJaA9DCGwIjsu4aQjAlIaUUpRoFUsyaBZHQJHQJyFPBSF1fZQoaAZoCWgPQwjY8V8gCND7v5SGlFKUaBVLMmgWR0CRz3F10T11dX2UKGgGaAloD0MI7gbRWtHm8r+UhpRSlGgVSzJoFkdAkc7C7GvOhXV9lChoBmgJaA9DCEc7bvjdNPi/lIaUUpRoFUsyaBZHQJHOHOmixml1fZQoaAZoCWgPQwgt6pPcYVP0v5SGlFKUaBVLMmgWR0CR0hQnQY1pdX2UKGgGaAloD0MIPpXTnpITEsCUhpRSlGgVSzJoFkdAkdFei8FpwnV9lChoBmgJaA9DCKQYINEEigPAlIaUUpRoFUsyaBZHQJHQr/JeVs11fZQoaAZoCWgPQwh/v5gtWTUOwJSGlFKUaBVLMmgWR0CR0AnOjZctdX2UKGgGaAloD0MI/5YA/FPqBsCUhpRSlGgVSzJoFkdAkdQFN+LFXXV9lChoBmgJaA9DCCao4VtY9/u/lIaUUpRoFUsyaBZHQJHTT7m+0w91fZQoaAZoCWgPQwjSwmUVNgMRwJSGlFKUaBVLMmgWR0CR0qC3w1BMdX2UKGgGaAloD0MIe0ykNJuH9L+UhpRSlGgVSzJoFkdAkdH5u/Dcd3V9lChoBmgJaA9DCHR5c7hWO/6/lIaUUpRoFUsyaBZHQJHV4Vzp5eJ1fZQoaAZoCWgPQwgBUMWNWwwPwJSGlFKUaBVLMmgWR0CR1SxMFlkIdX2UKGgGaAloD0MIZtgo6zeT+b+UhpRSlGgVSzJoFkdAkdR9ZA6dUnV9lChoBmgJaA9DCO3vbI/ecALAlIaUUpRoFUsyaBZHQJHT1mAbyYp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19928, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}