a2c-PandaReachDense-v2 / config.json
amannlp's picture
second commit
bf56ef3
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2283106050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2283102d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685230866076228767, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAivKqPk9nP712Mgw/ivKqPk9nP712Mgw/ivKqPk9nP712Mgw/ivKqPk9nP712Mgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4n/Evw3//D7v7z4+4TRCvx6Ypz1/kTA/En66PSfnrL9d9+g+Ha28vy3Rl78L0ZG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACK8qo+T2c/vXYyDD/eiYG8IVq6u2Y5PruK8qo+T2c/vXYyDD/eiYG8IVq6u2Y5PruK8qo+T2c/vXYyDD/eiYG8IVq6u2Y5PruK8qo+T2c/vXYyDD/eiYG8IVq6u2Y5PruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.33388168 -0.04672938 0.547645 ]\n [ 0.33388168 -0.04672938 0.547645 ]\n [ 0.33388168 -0.04672938 0.547645 ]\n [ 0.33388168 -0.04672938 0.547645 ]]", "desired_goal": "[[-1.5351527 0.49413338 0.18646215]\n [-0.75861937 0.08183311 0.6897201 ]\n [ 0.09106077 -1.3508042 0.45501223]\n [-1.474033 -1.186071 -0.284798 ]]", "observation": "[[ 0.33388168 -0.04672938 0.547645 -0.01581281 -0.00568701 -0.00290259]\n [ 0.33388168 -0.04672938 0.547645 -0.01581281 -0.00568701 -0.00290259]\n [ 0.33388168 -0.04672938 0.547645 -0.01581281 -0.00568701 -0.00290259]\n [ 0.33388168 -0.04672938 0.547645 -0.01581281 -0.00568701 -0.00290259]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+Y3fPe2Rxb3qPAU+uZ2BPRCGcb3tPgQ+X/xEPUKmHr2Qq5Q+cpqpvc83lL051EI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10915751 -0.09646974 0.13011518]\n [ 0.06328911 -0.05896574 0.1291463 ]\n [ 0.04809224 -0.03873277 0.29037142]\n [-0.08281411 -0.07237207 0.19026269]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImbfqOlRTAcCUhpRSlIwBbJRLMowBdJRHQKc3TmCiAUd1fZQoaAZoCWgPQwi86gHzkEkFwJSGlFKUaBVLMmgWR0CnNxRx95QhdX2UKGgGaAloD0MIMuauJeRD/7+UhpRSlGgVSzJoFkdApzbb+NtIkXV9lChoBmgJaA9DCJLn+j4cpALAlIaUUpRoFUsyaBZHQKc2aaFVT751fZQoaAZoCWgPQwgsYthhTPr5v5SGlFKUaBVLMmgWR0CnOF1HOKO1dX2UKGgGaAloD0MIzqeOVUoPCsCUhpRSlGgVSzJoFkdApzgjp3X7L3V9lChoBmgJaA9DCD86deWzfP2/lIaUUpRoFUsyaBZHQKc362qkuYh1fZQoaAZoCWgPQwi1+1WA77b+v5SGlFKUaBVLMmgWR0CnN3lFDv3KdX2UKGgGaAloD0MIk/3zNGDwAMCUhpRSlGgVSzJoFkdApzlLDdgv13V9lChoBmgJaA9DCI1donprAAnAlIaUUpRoFUsyaBZHQKc5EOf/WDp1fZQoaAZoCWgPQwirz9VW7C/+v5SGlFKUaBVLMmgWR0CnONh2OhkBdX2UKGgGaAloD0MIh8PSwI/qAMCUhpRSlGgVSzJoFkdApzhl+NLlFXV9lChoBmgJaA9DCN4+q8yU1gHAlIaUUpRoFUsyaBZHQKc6OKZ2IO91fZQoaAZoCWgPQwhYjpCBPHsHwJSGlFKUaBVLMmgWR0CnOf7TtsvadX2UKGgGaAloD0MIUvNV8rFbDcCUhpRSlGgVSzJoFkdApznGQp4KQnV9lChoBmgJaA9DCLIrLSP1fgTAlIaUUpRoFUsyaBZHQKc5U7cO9WZ1fZQoaAZoCWgPQwikx+9t+rMBwJSGlFKUaBVLMmgWR0CnOyeF10T2dX2UKGgGaAloD0MICkrRyr1gAMCUhpRSlGgVSzJoFkdApzrtW4mTknV9lChoBmgJaA9DCBuDTggdtPu/lIaUUpRoFUsyaBZHQKc6tMTviLl1fZQoaAZoCWgPQwhbCd0lcTYBwJSGlFKUaBVLMmgWR0CnOkJqqOtGdX2UKGgGaAloD0MIgCvZsREIAsCUhpRSlGgVSzJoFkdApzwaKiwjdHV9lChoBmgJaA9DCErrbwnAf/q/lIaUUpRoFUsyaBZHQKc74Elme191fZQoaAZoCWgPQwiXb31Yb1QHwJSGlFKUaBVLMmgWR0CnO6fIjnmrdX2UKGgGaAloD0MII04n2eoSCcCUhpRSlGgVSzJoFkdApzs1lf7aZnV9lChoBmgJaA9DCM10r5P6cv6/lIaUUpRoFUsyaBZHQKc9CoXsPat1fZQoaAZoCWgPQwgUd7zJbxEHwJSGlFKUaBVLMmgWR0CnPNCa7VawdX2UKGgGaAloD0MI8tO4N7+hB8CUhpRSlGgVSzJoFkdApzyYA80UGnV9lChoBmgJaA9DCFZ9rrZifwTAlIaUUpRoFUsyaBZHQKc8JYtg8bJ1fZQoaAZoCWgPQwhTBg5o6UoJwJSGlFKUaBVLMmgWR0CnPf3Y+Sr6dX2UKGgGaAloD0MIeAq5Us/CCMCUhpRSlGgVSzJoFkdApz3ECA+Y+nV9lChoBmgJaA9DCBXhJqPKsP+/lIaUUpRoFUsyaBZHQKc9i2iL2pR1fZQoaAZoCWgPQwjaHr3hPlIBwJSGlFKUaBVLMmgWR0CnPRjwx33YdX2UKGgGaAloD0MIwJSBA1r6AsCUhpRSlGgVSzJoFkdApz87IV/MGHV9lChoBmgJaA9DCDVFgNO7OAXAlIaUUpRoFUsyaBZHQKc/ActoSL91fZQoaAZoCWgPQwjJcad0sP4EwJSGlFKUaBVLMmgWR0CnPsk8ifQKdX2UKGgGaAloD0MIiLg5lQyABcCUhpRSlGgVSzJoFkdApz5XoHLRr3V9lChoBmgJaA9DCH3ogvqW+QTAlIaUUpRoFUsyaBZHQKdAa3BpHqh1fZQoaAZoCWgPQwjmXfWAeegFwJSGlFKUaBVLMmgWR0CnQDIaDPGAdX2UKGgGaAloD0MIPKQYINGEBMCUhpRSlGgVSzJoFkdApz/5e/pMYnV9lChoBmgJaA9DCAckYd9OYgLAlIaUUpRoFUsyaBZHQKc/hx0dRzl1fZQoaAZoCWgPQwhmTwKbc5AKwJSGlFKUaBVLMmgWR0CnQVaVD8cddX2UKGgGaAloD0MIxsTm49owA8CUhpRSlGgVSzJoFkdAp0EciUxEfHV9lChoBmgJaA9DCHQoQ1VMpfu/lIaUUpRoFUsyaBZHQKdA5AvcrRV1fZQoaAZoCWgPQwilvFZCd4kEwJSGlFKUaBVLMmgWR0CnQHGO+7DmdX2UKGgGaAloD0MIlbVN8bioA8CUhpRSlGgVSzJoFkdAp0JqQ7tAs3V9lChoBmgJaA9DCGyzsRLzjAfAlIaUUpRoFUsyaBZHQKdCMBfa6Bl1fZQoaAZoCWgPQwgMeJlhoywFwJSGlFKUaBVLMmgWR0CnQfhU70WedX2UKGgGaAloD0MIC3+GN2uQBcCUhpRSlGgVSzJoFkdAp0GGB4D9wXV9lChoBmgJaA9DCHF1AMRdHQbAlIaUUpRoFUsyaBZHQKdDf1B+nZV1fZQoaAZoCWgPQwhPWriswoYAwJSGlFKUaBVLMmgWR0CnQ0UhmoR7dX2UKGgGaAloD0MIsBwhA3lWCcCUhpRSlGgVSzJoFkdAp0MMnJDE33V9lChoBmgJaA9DCMtN1NLcCgfAlIaUUpRoFUsyaBZHQKdCml0HQhR1fZQoaAZoCWgPQwgzNJ4I4pwIwJSGlFKUaBVLMmgWR0CnRIOn/DLsdX2UKGgGaAloD0MIs9E5P8URBsCUhpRSlGgVSzJoFkdAp0RJvFWGRHV9lChoBmgJaA9DCIe/JmvUIwPAlIaUUpRoFUsyaBZHQKdEEQfZElV1fZQoaAZoCWgPQwgmAP+UKjEFwJSGlFKUaBVLMmgWR0CnQ56Ieo1ldX2UKGgGaAloD0MIRQ4RN6dSAsCUhpRSlGgVSzJoFkdAp0VrEm6XjXV9lChoBmgJaA9DCPewFwrYDgDAlIaUUpRoFUsyaBZHQKdFMPeYUnJ1fZQoaAZoCWgPQwic3sX7cVsOwJSGlFKUaBVLMmgWR0CnRPh2GIsRdX2UKGgGaAloD0MIp0HRPIDlBMCUhpRSlGgVSzJoFkdAp0SF9fCyhXV9lChoBmgJaA9DCJdTAmIS7gjAlIaUUpRoFUsyaBZHQKdGa1YQrc11fZQoaAZoCWgPQwifIoeImxMAwJSGlFKUaBVLMmgWR0CnRjE9U0emdX2UKGgGaAloD0MIGXCWkuXUEcCUhpRSlGgVSzJoFkdAp0X440dilXV9lChoBmgJaA9DCOWzPA/uLgXAlIaUUpRoFUsyaBZHQKdFhpqREF51fZQoaAZoCWgPQwjZCMTr+gX9v5SGlFKUaBVLMmgWR0CnR3YsVclgdX2UKGgGaAloD0MI4j0HliOk/b+UhpRSlGgVSzJoFkdAp0c8M7U5MnV9lChoBmgJaA9DCMqpnWFqywLAlIaUUpRoFUsyaBZHQKdHA80UGml1fZQoaAZoCWgPQwj4ONOE7ecGwJSGlFKUaBVLMmgWR0CnRpIpQUHqdX2UKGgGaAloD0MIGH0FacaCBsCUhpRSlGgVSzJoFkdAp0hbHp8neHV9lChoBmgJaA9DCLPNjekJiwTAlIaUUpRoFUsyaBZHQKdIIPjn3cp1fZQoaAZoCWgPQwgqyM9GrpsEwJSGlFKUaBVLMmgWR0CnR+hXKbKBdX2UKGgGaAloD0MIHy457pSO/b+UhpRSlGgVSzJoFkdAp0d125hBq3V9lChoBmgJaA9DCE65wrtcpALAlIaUUpRoFUsyaBZHQKdJYR7JGON1fZQoaAZoCWgPQwgkfzDw3NsHwJSGlFKUaBVLMmgWR0CnSScBltj1dX2UKGgGaAloD0MI9L9cixYgAMCUhpRSlGgVSzJoFkdAp0jucriEQHV9lChoBmgJaA9DCKGi6lc6PwLAlIaUUpRoFUsyaBZHQKdIfACW/rV1fZQoaAZoCWgPQwh5dY4B2QsHwJSGlFKUaBVLMmgWR0CnSk6Mir1edX2UKGgGaAloD0MIbK8FvTemB8CUhpRSlGgVSzJoFkdAp0oUZUDMeXV9lChoBmgJaA9DCOJWQQx0bQbAlIaUUpRoFUsyaBZHQKdJ289Oh011fZQoaAZoCWgPQwgDBkmfVpEKwJSGlFKUaBVLMmgWR0CnSWlE7W/bdX2UKGgGaAloD0MI9mIoJ9r1BsCUhpRSlGgVSzJoFkdAp0uVbs4T9XV9lChoBmgJaA9DCIjVH2EYMP2/lIaUUpRoFUsyaBZHQKdLW9lEqlR1fZQoaAZoCWgPQwjVXdkFgwsDwJSGlFKUaBVLMmgWR0CnSyO3MINWdX2UKGgGaAloD0MIiudsAaH1A8CUhpRSlGgVSzJoFkdAp0qxwGW2PXV9lChoBmgJaA9DCJFgqpm1NAXAlIaUUpRoFUsyaBZHQKdNEki2Ujd1fZQoaAZoCWgPQwhhM8AF2dIHwJSGlFKUaBVLMmgWR0CnTNim/FisdX2UKGgGaAloD0MITrNAu0PKCcCUhpRSlGgVSzJoFkdAp0ygr1/UfHV9lChoBmgJaA9DCAqGcw0zNP+/lIaUUpRoFUsyaBZHQKdMLsmfGuN1fZQoaAZoCWgPQwguymyQSQb+v5SGlFKUaBVLMmgWR0CnTpBwl0HRdX2UKGgGaAloD0MI0QX1LXOaDMCUhpRSlGgVSzJoFkdAp05W9+PRzHV9lChoBmgJaA9DCDuoxHWMa/q/lIaUUpRoFUsyaBZHQKdOHy/bj951fZQoaAZoCWgPQwhNMJxrmKEDwJSGlFKUaBVLMmgWR0CnTa07r9l3dX2UKGgGaAloD0MIQYF38ukxDMCUhpRSlGgVSzJoFkdAp1Azlo11n3V9lChoBmgJaA9DCLUaEvdY+v+/lIaUUpRoFUsyaBZHQKdP+o+fRNR1fZQoaAZoCWgPQwgJM23/ysr7v5SGlFKUaBVLMmgWR0CnT8KrBCUpdX2UKGgGaAloD0MIAhHiytl7A8CUhpRSlGgVSzJoFkdAp09RYDDCQHV9lChoBmgJaA9DCLx4P26/XADAlIaUUpRoFUsyaBZHQKdSHbaAWi11fZQoaAZoCWgPQwjtR4rIsEr+v5SGlFKUaBVLMmgWR0CnUeR1X/5tdX2UKGgGaAloD0MIforjwKuFAMCUhpRSlGgVSzJoFkdAp1GsfJV81HV9lChoBmgJaA9DCFWKHY1DnQvAlIaUUpRoFUsyaBZHQKdROys0YTF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}