File size: 13,713 Bytes
aaf9e8f
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x790474fafe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x790474fafeb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x790474faff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x790474fb8040>", "_build": "<function ActorCriticPolicy._build at 0x790474fb80d0>", "forward": "<function ActorCriticPolicy.forward at 0x790474fb8160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x790474fb81f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x790474fb8280>", "_predict": "<function ActorCriticPolicy._predict at 0x790474fb8310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x790474fb83a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x790474fb8430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x790474fb84c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x790474f58c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728479361039399088, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABcLTyd0FI+SA8nvp+wPL4/q7O9t9kRPAAAAAAAAAAAbTMwvtDenz9q+Ai/Vzvhvpkdlb76g3C+AAAAAAAAAACNlCK+jedpPz5lbL7QW/e+SFh7vk9qv7wAAAAAAAAAADOADT73QLc/q6MCP0IGkb4KjF4+qbacPgAAAAAAAAAAs2mcvVwnnz6LlZU+BtSyvtktHz6GDJY9AAAAAAAAAABmiFM8FIClulKfmLZvv02xaMHOumBpsjUAAIA/AACAP0YcUT7bjXw/828HPm+8BL8n3p8+9K2YvQAAAAAAAAAAIwR5vraHuD+Y1ia/5mzbvnOSzb4n/Iq+AAAAAAAAAADm2CS9ddAFPoTBpbycgpi+2LzoPPHOQTwAAAAAAAAAAM1ZqryF7tU8qtLKvaIfOL7NCE69E3Z4OgAAAAAAAAAAjW+xvaa1tz8EFiq/J0ZrvcJOB72GoIy+AAAAAAAAAADNOKs8dFu/PQYFrL4Cega+KPVhvnaskjwAAAAAAAAAAEbHnD6jQF8/9HGVPH9DA7/S/7s+2sLnvQAAAAAAAAAA82MIPlH5hj8Crjw+xT0evzqjUT4ywjs9AAAAAAAAAADNtD47V685PM6lyryL+E++z6vqPBdao7wAAAAAAAAAAE3xK77jm2A/RmvZvQ18075mtlS+unv1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEYSsKb8WOMAWyUS+OMAXSUR0Cg/ZDkMkQgdX2UKGgGR0BtfaF7D2rXaAdL5mgIR0Cg/c3iBGx2dX2UKGgGR0BxDLmGM4tIaAdL52gIR0Cg/ebaqS5idX2UKGgGR0ByILOjZcs2aAdL62gIR0Cg/gTq8lHCdX2UKGgGR0BwNZxDLKV6aAdL+mgIR0Cg/i2QGOdYdX2UKGgGR0ByNqQuEmICaAdNEQFoCEdAoP5Gkadc0XV9lChoBkdAc8bYBvJiiWgHS+xoCEdAoP5onWrfcnV9lChoBkdAcHaRcNYr8WgHS+BoCEdAoP6h6a9bo3V9lChoBkdAcD22Xsw+MmgHS+xoCEdAoP7JMQEpzHV9lChoBkdAccqEG7jDK2gHTQEBaAhHQKD/IFAVwgl1fZQoaAZHQHFAFsYVIqdoB00SAWgIR0Cg/yy1uzhQdX2UKGgGR0Bwft24d6syaAdNIAFoCEdAoP9Qnx8UmHV9lChoBkdAcGdBvJiiI2gHTQUBaAhHQKD/s1wYLst1fZQoaAZHQHBSvZRKpUBoB0vyaAhHQKD/5VvuPWB1fZQoaAZHQHJcNLDhtLtoB0vqaAhHQKEAvHZK3/h1fZQoaAZHQHDVNFrl/6RoB0vdaAhHQKEA8asIVud1fZQoaAZHQG8C+AEt/WloB00ZAWgIR0ChAQxIatLddX2UKGgGR0Bwy+Qjlgc+aAdL/GgIR0ChARiVrylOdX2UKGgGR0BzDHfTCtRvaAdL62gIR0ChAakgGKQ8dX2UKGgGR0ByGFLHuJDWaAdNDgFoCEdAoQHJ08vEj3V9lChoBkdAcRD7cO9WZWgHTQQBaAhHQKEBzW2gFot1fZQoaAZHQG+SaGpMpPRoB0v/aAhHQKEB1NPgvUV1fZQoaAZHQHJd0TpPhydoB0vsaAhHQKECFQswtap1fZQoaAZHQHLVUJSiudRoB0v5aAhHQKECHtRekYZ1fZQoaAZHQHJN7zK9wm5oB0vuaAhHQKECrZbpu/F1fZQoaAZHQHLw8UEgW8BoB00BAWgIR0ChAsreZXuFdX2UKGgGR0Byc4PvrnklaAdNEgFoCEdAoQL+kBS1mnV9lChoBkdAcSSP4VRDTmgHTQQBaAhHQKEDeRoysS11fZQoaAZHQHBq8QumJnBoB00NAWgIR0ChA9xxT850dX2UKGgGR0BzMSnxaxHHaAdL+2gIR0ChBJ9+PRzBdX2UKGgGR0BxO6TB68g7aAdL9mgIR0ChBMvoePq+dX2UKGgGR0ByIVvS+g14aAdL8WgIR0ChBO4KIBRydX2UKGgGR0BwCHSuyNXHaAdL3mgIR0ChBY7JW/8EdX2UKGgGR0BxgSM98qnWaAdL3WgIR0ChBf/GEPDpdX2UKGgGR0BwuuL876pHaAdNCAFoCEdAoRCtQj2SMnV9lChoBkdAcsYwT/Q0GmgHTTQBaAhHQKEQt1L8Jld1fZQoaAZHQHFBAGB4D9xoB00OAWgIR0ChEOoCMglodX2UKGgGR0BxwUmkWRA9aAdL/mgIR0ChEQKxs2vTdX2UKGgGR0BwIc2XLNfPaAdNHAFoCEdAoREoUvf0mXV9lChoBkdAcR6vV3EAHWgHS+xoCEdAoRFRrgwXZXV9lChoBkdAbwthDPWxyGgHTRsBaAhHQKESKXSBshx1fZQoaAZHQHKS+717IDJoB00PAWgIR0ChEi7BO58SdX2UKGgGR0Bv1skhRqGlaAdL+GgIR0ChEldVea8ZdX2UKGgGR0BzHy/RE4NraAdL8mgIR0ChEqCcXm/4dX2UKGgGR0BvytBOYYzjaAdL6WgIR0ChEyK/EfkndX2UKGgGR0BxG/cWTHKfaAdL62gIR0ChE1m8VYZEdX2UKGgGR0ByDbqoqCpWaAdNBwFoCEdAoRO+AuqWC3V9lChoBkdAcDIsfJV81GgHS/JoCEdAoRQ/oLXtjXV9lChoBkdActrTLW7OFGgHS+NoCEdAoRQ/oq0+knV9lChoBkdAcnfpw0fozWgHTQYBaAhHQKEURN+LFXJ1fZQoaAZHQG/lvykKu0VoB0vkaAhHQKEUTP69CeF1fZQoaAZHQHHrQtapxWFoB0vraAhHQKEUqeUY8+11fZQoaAZHQHAvOK0lZ5loB0v4aAhHQKEUxAcDKYB1fZQoaAZHQHKt1U6xPftoB0viaAhHQKEU1QDV6NV1fZQoaAZHQHBVt4iX6ZZoB00xAWgIR0ChFeLHEMspdX2UKGgGR0BwdSrKeTV2aAdL8GgIR0ChFevLxI8RdX2UKGgGR0BwaMvTPSlWaAdL/2gIR0ChFiK2KEWZdX2UKGgGR0ByEG4FzMibaAdL/2gIR0ChFk+n62v0dX2UKGgGR0BtxOmrKeTWaAdL7mgIR0ChFuLhrFfidX2UKGgGR0BtLVjiGWUsaAdNEgFoCEdAoRbzAzpHJHV9lChoBkdAcIIr1dxAB2gHTQoBaAhHQKEXlWKdhAp1fZQoaAZHQG5AZFocrAhoB00GAWgIR0ChF+92ovSMdX2UKGgGR0Bdxl/6O5rhaAdN6ANoCEdAoRf5OWSlnHV9lChoBkdAcZ4OSW7e22gHS91oCEdAoRhTOzIFNnV9lChoBkdAcLE2f029+WgHS/9oCEdAoRhYV45cT3V9lChoBkdAcY+FZxJd0WgHTQcBaAhHQKEYbxFy7wt1fZQoaAZHQHC0jcVQAMloB00JAWgIR0ChGHLeQ+2WdX2UKGgGR0BxaNFZxJd0aAdL82gIR0ChGIjHwPRRdX2UKGgGR0Byguol2NedaAdNNwFoCEdAoRkG7pV0cXV9lChoBkdAcKaqbz9S/GgHTRgBaAhHQKEZJzVc2R91fZQoaAZHQGz1DPv8ZUFoB0voaAhHQKEZn9y925h1fZQoaAZHQHG+6ur6tT1oB0v9aAhHQKEZt2ovSMN1fZQoaAZHQHMTmsijcmBoB0vjaAhHQKEZvhjOLR91fZQoaAZHQHIxItcv/R5oB0v8aAhHQKEZvFHavid1fZQoaAZHQHBv9wBHTZxoB0vqaAhHQKEaRiCrcTJ1fZQoaAZHQHEnjEehf0FoB00fAWgIR0ChGxJIUahpdX2UKGgGR0Bx4Kx4Y77saAdL+WgIR0ChGxJSR8txdX2UKGgGR0Bzg6mk30f6aAdL/WgIR0ChG2VHWjGldX2UKGgGR0ByrL/82rGSaAdL+mgIR0ChG7toSL62dX2UKGgGR0BwOsjPfKp2aAdL9mgIR0ChG8ucDr7gdX2UKGgGR0BxMw3fhuO0aAdL/2gIR0ChG9dc0LtvdX2UKGgGR0ByUPfxc3VDaAdNGQFoCEdAoRvcyzollnV9lChoBkdAbyWv8qFyrGgHTQMBaAhHQKEb/Riw0O51fZQoaAZHQG8lJxFRYRxoB00JAWgIR0ChHCTodMkAdX2UKGgGR0BwEr2SMcZMaAdNBAFoCEdAoRyTdnCfpXV9lChoBkdAbzhkbxVhkWgHTQABaAhHQKEdKqSX+l11fZQoaAZHQHHZyzgMtshoB0v7aAhHQKEdL/FzdUN1fZQoaAZHQHMOdLcsUZhoB00sAWgIR0ChHUl4LThHdX2UKGgGR0BtfeFxn3+NaAdNBAFoCEdAoR1S9Iwud3V9lChoBkdAcIsrVOKwZGgHS+1oCEdAoR2PXEqDsnV9lChoBkdAcNRP/aQFLWgHTSEBaAhHQKEdqeCkGiZ1fZQoaAZHQG6gVr6+FlFoB0v/aAhHQKEem2P1ct51fZQoaAZHQHAUSVB2OhloB00IAWgIR0ChHtJbUwztdX2UKGgGR0BwJZXS0BwNaAdL6GgIR0ChHxw0O3DvdX2UKGgGR0BtxqOktVaPaAdNAQFoCEdAoR8uBnSOR3V9lChoBkdAbj0u9OARTWgHS+1oCEdAoR9JhMJyAHV9lChoBkdAcvn2H+Idl2gHS9toCEdAoR9zsdDIBHV9lChoBkdAcPBlAeJYT2gHS/poCEdAoR+T2criEXV9lChoBkdAb/7C79Q40mgHS/NoCEdAoR+kCvHLinV9lChoBkdAcs03IdU83mgHTQkBaAhHQKEf2Xwb2lF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 440, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}