File size: 13,721 Bytes
dedb907
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e69b0386050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e69b03860e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e69b0386170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e69b0386200>", "_build": "<function ActorCriticPolicy._build at 0x7e69b0386290>", "forward": "<function ActorCriticPolicy.forward at 0x7e69b0386320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e69b03863b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e69b0386440>", "_predict": "<function ActorCriticPolicy._predict at 0x7e69b03864d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e69b0386560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e69b03865f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e69b0386680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e693b152000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735536300350140864, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrWVr1IY5a6PiCtuoAUhbPQHTG6DokbsgAAgD8AAIA/oG24vrBlqb3CyJc5lc6fOLOrqD5lYvu4AAAAAAAAAACa+QA6NKKNvFHtSr2KTCS+GG3xvIETmb4AAIA/AACAP5pZ7TuD9ym8n3ApO3D9rDwa6oo9u8+NvQAAgD8AAIA/M+bQPds+hT59dlq91GxqvrgjdTt0zYO9AAAAAAAAAAC99Ic++ZwHP1rloj1zVP++VliNPlucDzwAAAAAAAAAAIAvML0fV+M8oq9fvGP2kr4ZYuw94NeqvQAAAAAAAAAAMw/evdRHhD/f5JW9zliRvktcbL4SSAu9AAAAAAAAAAAamOK94dqVOZH8Fzh+ASkz71qeO+qrOLcAAIA/AAAAADObbrsQvLQ/zI88vtTPMjwe+Ig7ARgpPQAAAAAAAAAAMzizPAHdED9SXRw91CSuvk6YLD1MWYu7AAAAAAAAAADG2bA+29IaP7PS871Bv9C+IMdbPtHzEb4AAAAAAAAAAAAEfb77Qoo/A4eFvmDTYL7OrMu+kRDGvAAAAAAAAAAAMP6+Phhmwj7aTU6+RX+/vn94iT6k3C2+AAAAAAAAAADNOga9v6lZP4LRvr3uVYa+qILqva2StTwAAAAAAAAAAGb64jwc7hu8bla1vRC0kr0qF1i9fZK6vgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEb4akyk9GMAWyUTcsDjAF0lEdAkXsvMjeKsXV9lChoBkdAcKt5LytmtmgHTY4DaAhHQJF8p+gDifh1fZQoaAZHQHIhxdMTN+toB02JAWgIR0CRfk7laKUFdX2UKGgGR0BwXjNeMQ2/aAdNdgFoCEdAkX9Uu6ErXnV9lChoBkdAcFN93r2QGWgHTc8BaAhHQJF/tG7SRbN1fZQoaAZHQG7kVL8JlatoB029AWgIR0CRgrtsvZh8dX2UKGgGR0BxIt3xFy7xaAdN9wFoCEdAkYL6/dqL0nV9lChoBkdAckpj3225QWgHTcQCaAhHQJGGbKq4pc51fZQoaAZHQHIdbF85S3toB02VAWgIR0CRhqwrlNlAdX2UKGgGR0ByQaOIZZSvaAdNfgJoCEdAkYasFQl8gXV9lChoBkdAcWc1SwW30GgHTe0BaAhHQJGHOpxWDHx1fZQoaAZHQGSuc63iJfpoB03oA2gIR0CRjOA0bcXWdX2UKGgGR0Btg3ZyuIRAaAdNswFoCEdAkY4FnuiN83V9lChoBkdAcOJGG21D0GgHTasCaAhHQJGQgznA6+51fZQoaAZHQE85naFmFrVoB0vdaAhHQJGQqhufmLd1fZQoaAZHQG7n212JSBNoB02iAWgIR0CRku9pyp71dX2UKGgGR0Blow7LdN34aAdN6ANoCEdAkZazJ+2E03V9lChoBkdAbnezWwu/UWgHTW8BaAhHQJGXyzhP0qZ1fZQoaAZHQHLnsnZ00WNoB01AAmgIR0CRq33MINVjdX2UKGgGR0Bv2qLyc0+DaAdNhQJoCEdAkaweIZZSvXV9lChoBkdAP4SYw7DEWWgHS9loCEdAkaz+XE61cHV9lChoBkdAbkGdnTRYzWgHTUoBaAhHQJGuhsMy8Bd1fZQoaAZHQHDavdIoVmBoB001AmgIR0CRrucBU70WdX2UKGgGR0Bxjz9l2/zraAdNEwFoCEdAka9jmr8zh3V9lChoBkdAcY0TFl05l2gHTYICaAhHQJGvlaFEiMZ1fZQoaAZHQHJizOPeYUpoB03yAWgIR0CRsBn0Cih4dX2UKGgGR0ByDPTqjaf0aAdNagFoCEdAkbCrCvX9SHV9lChoBkdAccljlxOtXGgHTXYCaAhHQJG0Z9+gDih1fZQoaAZHQHDEofCAMDxoB02FAWgIR0CRtbBJZntfdX2UKGgGR0BUXLFCLMs6aAdLk2gIR0CRtc/7iyY5dX2UKGgGR0BvtYm7aqS6aAdNJQFoCEdAkbXbuIAOrnV9lChoBkdAcelu6ErXlWgHTQYBaAhHQJG2JzXBgu11fZQoaAZHQGWwNTkyULVoB03oA2gIR0CRuI2UjcEedX2UKGgGR0By6olJHy3DaAdNRAFoCEdAkbkUpmVZ93V9lChoBkdAc0F0bLlmvmgHTSoBaAhHQJG6HPyCnP51fZQoaAZHQG+Gv8qFyrBoB00gAWgIR0CRur2AG0NSdX2UKGgGR0BlazGgi/wiaAdN6ANoCEdAkbtErK/203V9lChoBkdAbi6kNWluWWgHTW4BaAhHQJG7aapgkTp1fZQoaAZHQHC1CEHt4RpoB00gAWgIR0CRu9MEzO5bdX2UKGgGR0Bjr8h1Tzd2aAdN6ANoCEdAkb+9OVPepHV9lChoBkdAbQoU21lXimgHTQgBaAhHQJHANQO4G2V1fZQoaAZHQG/7VjqfOD9oB03KAWgIR0CRwP2bXpW4dX2UKGgGR0BxHAP3BYV7aAdNcAFoCEdAkcRxg7YChnV9lChoBkdAcCzTviLl3mgHTb0CaAhHQJHFX0se4kN1fZQoaAZHQHKf207bL2ZoB01RAWgIR0CRxl0UGmk4dX2UKGgGR0Bwpe9TP0I1aAdNvwFoCEdAkcaZs9B8hXV9lChoBkdAcXxVn27FsGgHTS4BaAhHQJHHUCZF5Od1fZQoaAZHQHE7yfDk2gpoB03JAWgIR0CRyIwIMSbpdX2UKGgGR0BwjqEK3NLUaAdNeAFoCEdAkciiQDFId3V9lChoBkdAbH2NXo1UEWgHTXYBaAhHQJHJkrkKeCl1fZQoaAZHQG9tPfsNUfhoB02XAWgIR0CRzJhvitJWdX2UKGgGR0Bynl5X2dupaAdNMwFoCEdAkc02gBcRlHV9lChoBkdAcduSn+AEuGgHTU4BaAhHQJHN0SHuZ1F1fZQoaAZHQHGUBN21Ul1oB03eAWgIR0CRztdSVGCqdX2UKGgGR0Bx0CUu+RHPaAdNKgNoCEdAkc8v779AHHV9lChoBkdAcRd/fO2RaGgHTZoCaAhHQJHQW6tknTl1fZQoaAZHQHGlxTwUg0VoB00sAWgIR0CR0UAnDziCdX2UKGgGR0AT7hNucc2jaAdL1mgIR0CR0bO+IuXedX2UKGgGR0BzgSyquKXOaAdNRgFoCEdAkeYTrRjSX3V9lChoBkdAcOGdhiLEUGgHTd0BaAhHQJHmpDYywfR1fZQoaAZHQG1bLgn+hoNoB019AWgIR0CR55xwyZa3dX2UKGgGR0BwzuJAMUh3aAdNZAFoCEdAkeh2/etSynV9lChoBkdActtIpH7P6mgHTZQBaAhHQJHqKEZiuuB1fZQoaAZHQHCh80+C9RJoB00wAWgIR0CR6mNXo1UEdX2UKGgGR0By212Pkq+baAdNGQFoCEdAkeu7n5i3HHV9lChoBkdAci/GPgeijGgHTSYBaAhHQJHsoQSSNfh1fZQoaAZHQG2iDWK/EfloB00TA2gIR0CR7LT2WY4RdX2UKGgGR0BtnIxnFo+OaAdNZwFoCEdAke0ahUR3/3V9lChoBkdAcnW7fHggo2gHTRMCaAhHQJHtGreZXuF1fZQoaAZHQHA9WrfcesBoB01jAWgIR0CR7Xi83++/dX2UKGgGR0BwTZJd0JWvaAdNFwFoCEdAke3hakhzNnV9lChoBkdAb5pdE9dNWWgHTQ8BaAhHQJHt/ynUDuB1fZQoaAZHQHG+qCDmKZVoB00OAWgIR0CR73ULDye7dX2UKGgGR0BwVu4G2TgVaAdNQgFoCEdAkfKAtjCpFXV9lChoBkdAcQ/01ZTya2gHS+hoCEdAkfS+WrwOOXV9lChoBkdAcNn0w8GLUGgHTTMBaAhHQJH34oKD0191fZQoaAZHQHBi/B3zMA5oB01MAmgIR0CR+LcSoOx0dX2UKGgGR0BxA9mlImPYaAdNYQFoCEdAkfkFgH/tIHV9lChoBkdAcOqWS2Yv4GgHTY0BaAhHQJH5HnIQvpR1fZQoaAZHQHCwrzPKMehoB002AWgIR0CR+TUDMeOodX2UKGgGR0BxMW7voePraAdN6QFoCEdAkfr6GDcuanV9lChoBkdAcgCF85S3s2gHTYIBaAhHQJH7zfMwDeV1fZQoaAZHQGZEvcafjCJoB03oA2gIR0CR/Zun/DLsdX2UKGgGR0BxWF9oexOdaAdNJAFoCEdAkf9gqI7/43V9lChoBkdAcH0kxyn1nWgHTZgBaAhHQJIAgoYvWYp1fZQoaAZHQG6H+jdpItloB03vAWgIR0CSAa3z+WGAdX2UKGgGR0Bv90LfDUExaAdNKgJoCEdAkgRgQQL/j3V9lChoBkdAca+N4JNTLmgHS/ZoCEdAkgWFtO2y9nV9lChoBkdAcWwzJp35e2gHTTEBaAhHQJIFvQ0GeMB1fZQoaAZHQHHFUMspXp5oB00tAWgIR0CSBdGOuJUHdX2UKGgGR0BwUeiUPhAGaAdNkAFoCEdAkgZOFL39JnV9lChoBkdAcLCzByjpLWgHTXABaAhHQJIIagZjx1B1fZQoaAZHQHBeW/vfCQ9oB00PAWgIR0CSCOKSgXdkdX2UKGgGR0BxHFx3mmtRaAdNWQFoCEdAkgoKpkwvg3V9lChoBkdAcOOgBtDUmWgHTRYBaAhHQJIKobbUPQR1fZQoaAZHQHKxZOi35N5oB03KAWgIR0CSCuNXYDkmdX2UKGgGR0BunJjDsMRZaAdNsgFoCEdAkgr2/N7jUHV9lChoBkdAcCT4UeuFH2gHTSIBaAhHQJILyksSTQp1fZQoaAZHQHKm9Un5SFZoB00OAWgIR0CSDAjC53C9dX2UKGgGR0BlF8zImw7laAdN6ANoCEdAkg01Pva11HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}