ppo-LunarLander-v2 / config.json
amant44's picture
trained agent with more steps and tuned parameters
1e4b65f verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7905bee957e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7905bee95870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7905bee95900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7905bee95990>", "_build": "<function ActorCriticPolicy._build at 0x7905bee95a20>", "forward": "<function ActorCriticPolicy.forward at 0x7905bee95ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7905bee95b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7905bee95bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7905bee95c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7905bee95cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7905bee95d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7905bee95e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7905bee8ebc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2097152, "_total_timesteps": 2097152, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715673261931870392, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJqlYjzQLKg+A2YkPrRWp76zLKQ9xr+RPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG79TfzjFQ6MAWyUS9GMAXSUR0CtXFxQ79ycdX2UKGgGR0BzV0RXfZVXaAdLxmgIR0CtXPJqREF4dX2UKGgGR0Bz6l8stkFwaAdLxWgIR0CtXYYSg5BDdX2UKGgGR0Bt7zcEeQuFaAdLzWgIR0CtXiQlruYydX2UKGgGR0BxEP2ugYgraAdLwGgIR0CtXrV+RYA9dX2UKGgGR0ByseEUTL4faAdL1mgIR0CtX6t0V8CxdX2UKGgGR0Bx1bYChew+aAdL1GgIR0CtYE9mYjSodX2UKGgGR0ByFt4u9OARaAdLuGgIR0CtYN35vcagdX2UKGgGR0Bv6SBiCrcTaAdLwWgIR0CtYW7voePrdX2UKGgGR0BynQsI3R5UaAdL8GgIR0CtYijHwPRRdX2UKGgGR0BzUw6gdwNtaAdNKwJoCEdArWQrE74i5nV9lChoBkdAca5Hjp9qlGgHS8JoCEdArWS+3nZCfHV9lChoBkdAcRpMtbs4UGgHS9xoCEdArWVk54nndXV9lChoBkdAcYwAYHgP3GgHS8hoCEdArWZTI/7iynV9lChoBkdAcyfImgJ1JWgHS9loCEdArWbzjDKoynV9lChoBkdAcd25+pfhM2gHS8BoCEdArWd/oNd7fHV9lChoBkdAcOCptJnQIGgHS8xoCEdArWgd7v5P/XV9lChoBkdAcaJtyPuG9GgHS71oCEdArWischkiEHV9lChoBkdAcwR35eqrBGgHS9hoCEdArWmqIJqqO3V9lChoBkdAc2mEG7jDK2gHS8BoCEdArWpIogFHKHV9lChoBkdAcxYQwblzVGgHS9loCEdArWsFOoHcDnV9lChoBkdAc/uH1vl2eWgHTQMBaAhHQK1sAURFqi51fZQoaAZHQG/Dr7fpD/loB0vyaAhHQK1s6fCAMDx1fZQoaAZHQHCw5D/lyR1oB0vNaAhHQK1uNUiILw51fZQoaAZHQHGTUzKs+3ZoB0vBaAhHQK1vE0zj3mF1fZQoaAZHQHF055qubI9oB0vEaAhHQK1v21YyO7x1fZQoaAZHQHFFjUZvUBpoB0vcaAhHQK1wzlmOEM91fZQoaAZHQHIK8rRSgoRoB0vZaAhHQK1xmlZ5iVl1fZQoaAZHQHBFDPa+N99oB0vCaAhHQK1yh4AS39d1fZQoaAZHQHDYfalDWsloB0vHaAhHQK1zG03wTdt1fZQoaAZHQHIhjD0lJH1oB0vkaAhHQK1zwFL39Jl1fZQoaAZHQHH8sc2itaJoB0vHaAhHQK10WEQoTf11fZQoaAZHQG+8yjYZl4FoB0vNaAhHQK11Cd6LOzJ1fZQoaAZHQGd1me+VTrFoB03oA2gIR0CteGu76Hj7dX2UKGgGR0Bxt9QUHpr2aAdLxWgIR0CteV+hwl0HdX2UKGgGR0Bv3S37UG3XaAdL0mgIR0Cteftd7fHhdX2UKGgGR0ByNlKZlWfcaAdL6WgIR0CteqYR/ViGdX2UKGgGR0BvzZuIhyKfaAdL2WgIR0Cte0vH1e0HdX2UKGgGR0ByuyZBsyi3aAdL3WgIR0CtfEDXnQpndX2UKGgGR0BvsUG1QZXNaAdLzGgIR0CtfNuJcgQpdX2UKGgGR0BwGGTibUgCaAdLzGgIR0CtfXMDnvDxdX2UKGgGR0BwkIBS1maqaAdLwGgIR0CtfgGMfigkdX2UKGgGR0ByOqsr/bTMaAdL3mgIR0CtfqR3V09ydX2UKGgGR0By4rWy1NQCaAdL9WgIR0Ctf7KpcX3ydX2UKGgGR0BvvEgU1yeaaAdLzmgIR0CtgEp0W/JvdX2UKGgGR0ByNPw8W9DhaAdLv2gIR0CtgOwNkOI7dX2UKGgGR0BxekIRh+fAaAdL5mgIR0CtgZlLWZqmdX2UKGgGR0ByZd5/smfHaAdLzGgIR0CtgjPxx1gZdX2UKGgGR0ByAwqur6tUaAdL22gIR0Ctg7iOearndX2UKGgGR0BygwZ88cMmaAdL+GgIR0CthGu4gA6udX2UKGgGR0Bw0J4LThHcaAdL9mgIR0CthSzkp7TldX2UKGgGR0BxrDJp35eraAdLz2gIR0Cthf44ZMtcdX2UKGgGR0ByJaTgVGkOaAdL5GgIR0CtiBOG9HtndX2UKGgGR0BxMEhQm/nGaAdLzWgIR0CtiOlnqVyFdX2UKGgGR0BwASw9q1w6aAdL4mgIR0CtiwzMaCL/dX2UKGgGR0Byu6x0MgEEaAdLyWgIR0Cti+YdhiLEdX2UKGgGR0BzA4wGnn+yaAdL22gIR0CtjK9Vea8ZdX2UKGgGR0BvlI4n4O+aaAdL9WgIR0CtjcMOoYNzdX2UKGgGR8A4meDnNgSfaAdLe2gIR0CtjiKmCROldX2UKGgGR0BwJ8aya/h3aAdLzGgIR0CtjrxQJokBdX2UKGgGR0B0B80IkZ75aAdLumgIR0Ctj0fZ/Tb4dX2UKGgGR0BviSiRGMGYaAdL5GgIR0Ctj/IUzsQedX2UKGgGR0BwjR3FDOTraAdLv2gIR0CtkICILw4LdX2UKGgGR0BwwBBrvb48aAdLyWgIR0CtkW4rBj4IdX2UKGgGR0Bu1YNLDhtMaAdL1mgIR0Ctkg/io86ndX2UKGgGR0Bt5UUsWfseaAdL02gIR0Ctkq4keIVNdX2UKGgGR0Bx9lPj4pMIaAdL7mgIR0Ctk2SyMUAUdX2UKGgGR0BygkMH8jzJaAdL52gIR0CtlGyCvovBdX2UKGgGR0ByQw1ejVQRaAdL52gIR0CtlRwvYe1bdX2UKGgGR0Bwhrh2nsLOaAdL5WgIR0CtlcxnnMdMdX2UKGgGR0BxsC3pfQa8aAdL1mgIR0CtlmqZc9nsdX2UKGgGR0Bx5UJAt4A0aAdLzGgIR0Ctlv4QJ5VwdX2UKGgGR0BRQ41cdHUdaAdLp2gIR0Ctl82YWtU5dX2UKGgGR0By0VpXZGrkaAdNWQFoCEdArZjLxXnyNHV9lChoBkdAcgPgZ0jkdWgHS+ZoCEdArZl4Pd2xIXV9lChoBkdAcs4EP1+RYGgHS8hoCEdArZoRXCCSR3V9lChoBkdAcSsWz4UN8WgHS+NoCEdArZsJMnJDE3V9lChoBkdAcIS8hs67umgHS91oCEdArZupBX0Xg3V9lChoBkdAciY7Rv3rU2gHS89oCEdArZxD9Oymh3V9lChoBkdAcoD79AHE/GgHS8doCEdArZzdOTJQtXV9lChoBkdAcz3GOMl1KWgHS9BoCEdArZ1+SIP9UHV9lChoBkdAcdQL876pHmgHS8NoCEdArZ5xKL8763V9lChoBkdAcIW9Htnf22gHS9JoCEdArZ8QXj2i+XV9lChoBkdAcrYZv1lGw2gHS+doCEdArZ+5GBnSOXV9lChoBkdAc3eD2JzkqGgHTRIBaAhHQK2gmH1OCXh1fZQoaAZHQHImXYYixFBoB0vJaAhHQK2hYucMEzR1fZQoaAZHQHPZDTz/ZNBoB0vJaAhHQK2imcn3L3d1fZQoaAZHQHOmLgbZOBVoB0vSaAhHQK2jZeHBUJh1fZQoaAZHQHDjUTYdyT9oB0vTaAhHQK2kPW1+iJx1fZQoaAZHQHN4L+YMOPNoB0vxaAhHQK2lM+kgwGp1fZQoaAZHQHEJNQO4G2VoB0vRaAhHQK2mCjxCpm51fZQoaAZHQHKOHV5KODJoB0vLaAhHQK2nPyfcvdx1fZQoaAZHQHHafFirksBoB0vaaAhHQK2n3jn3cpN1fZQoaAZHQHPgtcGC7K9oB0v5aAhHQK2om1BMSK51fZQoaAZHQHGMnHJcPe5oB0viaAhHQK2pQyFfzBh1fZQoaAZHQG8t7YChew9oB0vBaAhHQK2qKsySFGp1fZQoaAZHQG/8B91EE1VoB0vbaAhHQK2q0Az544Z1fZQoaAZHQHNxlVghKUVoB0vnaAhHQK2rh9b5dnl1fZQoaAZHQHDugS39aU1oB0vKaAhHQK2sHD4xk/d1fZQoaAZHQHC7gt4A0bdoB0vHaAhHQK2sse/YapB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4128, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQO3XsLnGZsD0fgD4tV+NXKowDaW5jlIoQX8NjLMp1gtoPiWLjBsliN3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEre+QVJdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 2, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}