amartyasaran commited on
Commit
7292c9f
1 Parent(s): b32a7d5

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. SwinCXRConfig.py +12 -0
  3. SwinModelForCXRClassification.py +116 -0
  4. config.json +17 -0
  5. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
SwinCXRConfig.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class SwinCXRConfig(PretrainedConfig):
4
+ model_type = "swin_cxr"
5
+
6
+ def __init__(self, num_classes=3, embed_dim=128, num_heads=4, num_layers=4, dropout=0.1, **kwargs):
7
+ self.num_classes = num_classes
8
+ self.embed_dim = embed_dim
9
+ self.num_heads = num_heads
10
+ self.num_layers = num_layers
11
+ self.dropout = dropout
12
+ super().__init__(**kwargs)
SwinModelForCXRClassification.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import LayerNorm, Linear, Dropout
4
+ from torch.nn.functional import gelu
5
+ from transformers import PretrainedConfig, PreTrainedModel
6
+ from SwinCXRConfig import SwinCXRConfig
7
+
8
+ class SwinSelfAttention(nn.Module):
9
+ def __init__(self, embed_dim, num_heads, dropout):
10
+ super(SwinSelfAttention, self).__init__()
11
+ self.query = Linear(embed_dim, embed_dim)
12
+ self.key = Linear(embed_dim, embed_dim)
13
+ self.value = Linear(embed_dim, embed_dim)
14
+ self.dropout = Dropout(p=dropout)
15
+
16
+ def forward(self, x):
17
+ query = self.query(x)
18
+ key = self.key(x)
19
+ value = self.value(x)
20
+ attention_weights = torch.matmul(query, key.transpose(-2, -1)) / query.size(-1)**0.5
21
+ attention_weights = torch.nn.functional.softmax(attention_weights, dim=-1)
22
+ attention_output = torch.matmul(attention_weights, value)
23
+ return self.dropout(attention_output)
24
+
25
+ class SwinLayer(nn.Module):
26
+ def __init__(self, embed_dim, num_heads, dropout=0.1):
27
+ super(SwinLayer, self).__init__()
28
+ self.layernorm_before = LayerNorm(embed_dim)
29
+ self.attention = SwinSelfAttention(embed_dim, num_heads, dropout)
30
+ self.drop_path = Dropout(p=dropout)
31
+ self.layernorm_after = LayerNorm(embed_dim)
32
+
33
+ self.fc1 = Linear(embed_dim, 4 * embed_dim)
34
+ self.fc2 = Linear(4 * embed_dim, embed_dim)
35
+ self.intermediate_act_fn = gelu
36
+
37
+ def forward(self, x):
38
+ normed = self.layernorm_before(x)
39
+ attention_output = self.attention(normed)
40
+ attention_output = self.drop_path(attention_output)
41
+ x = x + attention_output
42
+
43
+ normed = self.layernorm_after(x)
44
+ intermediate = self.fc1(normed)
45
+ intermediate = self.intermediate_act_fn(intermediate)
46
+ output = self.fc2(intermediate)
47
+
48
+ return x + output
49
+
50
+
51
+ class SwinPatchEmbedding(nn.Module):
52
+ def __init__(self, in_channels=3, patch_size=4, embed_dim=128):
53
+ super(SwinPatchEmbedding, self).__init__()
54
+ self.projection = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
55
+ self.norm = LayerNorm(embed_dim)
56
+
57
+ def forward(self, x):
58
+ x = self.projection(x)
59
+ x = x.flatten(2).transpose(1, 2)
60
+ x = self.norm(x)
61
+ return x
62
+
63
+ class SwinEncoder(nn.Module):
64
+ def __init__(self, num_layers, embed_dim, num_heads, dropout=0.1):
65
+ super(SwinEncoder, self).__init__()
66
+ self.layers = nn.ModuleList([
67
+ SwinLayer(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout)
68
+ for _ in range(num_layers)
69
+ ])
70
+
71
+ def forward(self, x):
72
+ for layer in self.layers:
73
+ x = layer(x)
74
+ return x
75
+
76
+ class SwinModelForCXRClassification(PreTrainedModel):
77
+ config_class = SwinCXRConfig
78
+ def __init__(self, config):
79
+ super(SwinModelForCXRClassification, self).__init__(config)
80
+
81
+ self.embeddings = nn.Module()
82
+ self.embeddings.patch_embeddings = SwinPatchEmbedding(
83
+ in_channels=3,
84
+ patch_size=4,
85
+ embed_dim=128
86
+ )
87
+ self.embeddings.norm = LayerNorm(128)
88
+ self.embeddings.dropout = Dropout(p=0.0)
89
+
90
+ self.encoder = SwinEncoder(
91
+ num_layers=4,
92
+ embed_dim=128,
93
+ num_heads=4,
94
+ dropout=0.1
95
+ )
96
+
97
+ self.layernorm = LayerNorm(128)
98
+ self.pooler = nn.AdaptiveAvgPool1d(output_size=1)
99
+
100
+ self.classifier = Linear(in_features=128, out_features=3, bias=True)
101
+
102
+ def forward(self, pixel_values, labels=None):
103
+ x = self.embeddings.patch_embeddings(pixel_values)
104
+ x = self.encoder(x)
105
+
106
+ x = self.layernorm(x)
107
+ x = self.pooler(x.transpose(1, 2)).squeeze(-1)
108
+
109
+ logits = self.classifier(x)
110
+
111
+ if labels is not None:
112
+ loss_fct = nn.CrossEntropyLoss()
113
+ loss = loss_fct(logits.view(-1, self.config.num_classes), labels.view(-1))
114
+ return loss, logits
115
+
116
+ return logits
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SwinModelForCXRClassification"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "SwinCXRConfig.SwinCXRConfig",
7
+ "AutoModelForImageClassification": "SwinModelForCXRClassification.SwinModelForCXRClassification"
8
+ },
9
+ "dropout": 0.1,
10
+ "embed_dim": 128,
11
+ "model_type": "swin_cxr",
12
+ "num_classes": 3,
13
+ "num_heads": 4,
14
+ "num_layers": 4,
15
+ "torch_dtype": "float32",
16
+ "transformers_version": "4.46.3"
17
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca289ef5e0d605768c0623ff419814ecead12653f36dc127657e64f020d91427
3
+ size 2944444