amartyasaran
commited on
Commit
•
7292c9f
1
Parent(s):
b32a7d5
Upload model
Browse files- README.md +199 -0
- SwinCXRConfig.py +12 -0
- SwinModelForCXRClassification.py +116 -0
- config.json +17 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
SwinCXRConfig.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class SwinCXRConfig(PretrainedConfig):
|
4 |
+
model_type = "swin_cxr"
|
5 |
+
|
6 |
+
def __init__(self, num_classes=3, embed_dim=128, num_heads=4, num_layers=4, dropout=0.1, **kwargs):
|
7 |
+
self.num_classes = num_classes
|
8 |
+
self.embed_dim = embed_dim
|
9 |
+
self.num_heads = num_heads
|
10 |
+
self.num_layers = num_layers
|
11 |
+
self.dropout = dropout
|
12 |
+
super().__init__(**kwargs)
|
SwinModelForCXRClassification.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import LayerNorm, Linear, Dropout
|
4 |
+
from torch.nn.functional import gelu
|
5 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
6 |
+
from SwinCXRConfig import SwinCXRConfig
|
7 |
+
|
8 |
+
class SwinSelfAttention(nn.Module):
|
9 |
+
def __init__(self, embed_dim, num_heads, dropout):
|
10 |
+
super(SwinSelfAttention, self).__init__()
|
11 |
+
self.query = Linear(embed_dim, embed_dim)
|
12 |
+
self.key = Linear(embed_dim, embed_dim)
|
13 |
+
self.value = Linear(embed_dim, embed_dim)
|
14 |
+
self.dropout = Dropout(p=dropout)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
query = self.query(x)
|
18 |
+
key = self.key(x)
|
19 |
+
value = self.value(x)
|
20 |
+
attention_weights = torch.matmul(query, key.transpose(-2, -1)) / query.size(-1)**0.5
|
21 |
+
attention_weights = torch.nn.functional.softmax(attention_weights, dim=-1)
|
22 |
+
attention_output = torch.matmul(attention_weights, value)
|
23 |
+
return self.dropout(attention_output)
|
24 |
+
|
25 |
+
class SwinLayer(nn.Module):
|
26 |
+
def __init__(self, embed_dim, num_heads, dropout=0.1):
|
27 |
+
super(SwinLayer, self).__init__()
|
28 |
+
self.layernorm_before = LayerNorm(embed_dim)
|
29 |
+
self.attention = SwinSelfAttention(embed_dim, num_heads, dropout)
|
30 |
+
self.drop_path = Dropout(p=dropout)
|
31 |
+
self.layernorm_after = LayerNorm(embed_dim)
|
32 |
+
|
33 |
+
self.fc1 = Linear(embed_dim, 4 * embed_dim)
|
34 |
+
self.fc2 = Linear(4 * embed_dim, embed_dim)
|
35 |
+
self.intermediate_act_fn = gelu
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
normed = self.layernorm_before(x)
|
39 |
+
attention_output = self.attention(normed)
|
40 |
+
attention_output = self.drop_path(attention_output)
|
41 |
+
x = x + attention_output
|
42 |
+
|
43 |
+
normed = self.layernorm_after(x)
|
44 |
+
intermediate = self.fc1(normed)
|
45 |
+
intermediate = self.intermediate_act_fn(intermediate)
|
46 |
+
output = self.fc2(intermediate)
|
47 |
+
|
48 |
+
return x + output
|
49 |
+
|
50 |
+
|
51 |
+
class SwinPatchEmbedding(nn.Module):
|
52 |
+
def __init__(self, in_channels=3, patch_size=4, embed_dim=128):
|
53 |
+
super(SwinPatchEmbedding, self).__init__()
|
54 |
+
self.projection = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
55 |
+
self.norm = LayerNorm(embed_dim)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.projection(x)
|
59 |
+
x = x.flatten(2).transpose(1, 2)
|
60 |
+
x = self.norm(x)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class SwinEncoder(nn.Module):
|
64 |
+
def __init__(self, num_layers, embed_dim, num_heads, dropout=0.1):
|
65 |
+
super(SwinEncoder, self).__init__()
|
66 |
+
self.layers = nn.ModuleList([
|
67 |
+
SwinLayer(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout)
|
68 |
+
for _ in range(num_layers)
|
69 |
+
])
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
for layer in self.layers:
|
73 |
+
x = layer(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
class SwinModelForCXRClassification(PreTrainedModel):
|
77 |
+
config_class = SwinCXRConfig
|
78 |
+
def __init__(self, config):
|
79 |
+
super(SwinModelForCXRClassification, self).__init__(config)
|
80 |
+
|
81 |
+
self.embeddings = nn.Module()
|
82 |
+
self.embeddings.patch_embeddings = SwinPatchEmbedding(
|
83 |
+
in_channels=3,
|
84 |
+
patch_size=4,
|
85 |
+
embed_dim=128
|
86 |
+
)
|
87 |
+
self.embeddings.norm = LayerNorm(128)
|
88 |
+
self.embeddings.dropout = Dropout(p=0.0)
|
89 |
+
|
90 |
+
self.encoder = SwinEncoder(
|
91 |
+
num_layers=4,
|
92 |
+
embed_dim=128,
|
93 |
+
num_heads=4,
|
94 |
+
dropout=0.1
|
95 |
+
)
|
96 |
+
|
97 |
+
self.layernorm = LayerNorm(128)
|
98 |
+
self.pooler = nn.AdaptiveAvgPool1d(output_size=1)
|
99 |
+
|
100 |
+
self.classifier = Linear(in_features=128, out_features=3, bias=True)
|
101 |
+
|
102 |
+
def forward(self, pixel_values, labels=None):
|
103 |
+
x = self.embeddings.patch_embeddings(pixel_values)
|
104 |
+
x = self.encoder(x)
|
105 |
+
|
106 |
+
x = self.layernorm(x)
|
107 |
+
x = self.pooler(x.transpose(1, 2)).squeeze(-1)
|
108 |
+
|
109 |
+
logits = self.classifier(x)
|
110 |
+
|
111 |
+
if labels is not None:
|
112 |
+
loss_fct = nn.CrossEntropyLoss()
|
113 |
+
loss = loss_fct(logits.view(-1, self.config.num_classes), labels.view(-1))
|
114 |
+
return loss, logits
|
115 |
+
|
116 |
+
return logits
|
config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SwinModelForCXRClassification"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "SwinCXRConfig.SwinCXRConfig",
|
7 |
+
"AutoModelForImageClassification": "SwinModelForCXRClassification.SwinModelForCXRClassification"
|
8 |
+
},
|
9 |
+
"dropout": 0.1,
|
10 |
+
"embed_dim": 128,
|
11 |
+
"model_type": "swin_cxr",
|
12 |
+
"num_classes": 3,
|
13 |
+
"num_heads": 4,
|
14 |
+
"num_layers": 4,
|
15 |
+
"torch_dtype": "float32",
|
16 |
+
"transformers_version": "4.46.3"
|
17 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca289ef5e0d605768c0623ff419814ecead12653f36dc127657e64f020d91427
|
3 |
+
size 2944444
|