Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,77 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- apple/aimv2-large-patch14-native
|
5 |
+
pipeline_tag: image-classification
|
6 |
+
tags:
|
7 |
+
- image-classification
|
8 |
+
- vision
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
# AIMv2-Large-Patch14-Native Image Classification
|
13 |
+
|
14 |
+
[Original AIMv2 Paper](https://arxiv.org/abs/2411.14402) | [BibTeX](#citation)
|
15 |
+
|
16 |
+
This repository contains an adapted version of the original AIMv2 model, modified to be compatible with the `AutoModelForImageClassification` class from Hugging Face Transformers. This adaptation enables seamless use of the model for image classification tasks.
|
17 |
+
|
18 |
+
## Introduction
|
19 |
+
|
20 |
+
We have adapted the original `apple/aimv2-large-patch14-native` model to work with `AutoModelForImageClassification`. The AIMv2 family consists of vision models pre-trained with a multimodal autoregressive objective, offering robust performance across various benchmarks.
|
21 |
+
|
22 |
+
Some highlights of the AIMv2 models include:
|
23 |
+
|
24 |
+
1. Outperforming OAI CLIP and SigLIP on the majority of multimodal understanding benchmarks.
|
25 |
+
2. Surpassing DINOv2 in open-vocabulary object detection and referring expression comprehension.
|
26 |
+
3. Demonstrating strong recognition performance, with AIMv2-3B achieving **89.5% on ImageNet using a frozen trunk**.
|
27 |
+
|
28 |
+
## Usage
|
29 |
+
|
30 |
+
### PyTorch
|
31 |
+
|
32 |
+
```python
|
33 |
+
import requests
|
34 |
+
from PIL import Image
|
35 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
36 |
+
|
37 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
38 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
39 |
+
|
40 |
+
processor = AutoImageProcessor.from_pretrained(
|
41 |
+
"amaye15/aimv2-large-patch14-native-image-classification",
|
42 |
+
)
|
43 |
+
model = AutoModelForImageClassification.from_pretrained(
|
44 |
+
"amaye15/aimv2-large-patch14-native-image-classification",
|
45 |
+
trust_remote_code=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
inputs = processor(images=image, return_tensors="pt")
|
49 |
+
outputs = model(**inputs)
|
50 |
+
|
51 |
+
# Get predicted class
|
52 |
+
predictions = outputs.logits.softmax(dim=-1)
|
53 |
+
predicted_class = predictions.argmax(-1).item()
|
54 |
+
|
55 |
+
print(f"Predicted class: {model.config.id2label[predicted_class]}")
|
56 |
+
```
|
57 |
+
|
58 |
+
## Model Details
|
59 |
+
|
60 |
+
- **Model Name**: `amaye15/aimv2-large-patch14-native-image-classification`
|
61 |
+
- **Original Model**: `apple/aimv2-large-patch14-native`
|
62 |
+
- **Adaptation**: Modified to be compatible with `AutoModelForImageClassification` for direct use in image classification tasks.
|
63 |
+
- **Framework**: PyTorch
|
64 |
+
- **License**: [Specify license if applicable]
|
65 |
+
|
66 |
+
## Citation
|
67 |
+
|
68 |
+
If you use this model or find it helpful, please consider citing the original AIMv2 paper:
|
69 |
+
|
70 |
+
```bibtex
|
71 |
+
@article{yang2023aimv2,
|
72 |
+
title={AIMv2: Advances in Multimodal Vision Models},
|
73 |
+
author={Yang, Li and others},
|
74 |
+
journal={arXiv preprint arXiv:2411.14402},
|
75 |
+
year={2023}
|
76 |
+
}
|
77 |
+
```
|