""" Autoencoder configuration for Hugging Face Transformers. """ from transformers import PretrainedConfig from typing import List, Optional # Support both package-relative and flat import in HF remote code context try: from . import __version__ as _pkg_version # type: ignore except Exception: # pragma: no cover _pkg_version = None class AutoencoderConfig(PretrainedConfig): """ Configuration class for Autoencoder models. This configuration class stores the configuration of an autoencoder model. It is used to instantiate an autoencoder model according to the specified arguments, defining the model architecture. Args: input_dim (int, optional): Dimensionality of the input data. Defaults to 784. hidden_dims (List[int], optional): List of hidden layer dimensions for the encoder. The decoder will use the reverse of this list. Defaults to [512, 256, 128]. latent_dim (int, optional): Dimensionality of the latent space. Defaults to 64. activation (str, optional): Activation function to use. Options: "relu", "tanh", "sigmoid", "leaky_relu", "gelu", "swish", "silu", "elu", "prelu", "relu6", "hardtanh", "hardsigmoid", "hardswish", "mish", "softplus", "softsign", "tanhshrink", "threshold". Defaults to "relu". dropout_rate (float, optional): Dropout rate for regularization. Defaults to 0.1. use_batch_norm (bool, optional): Whether to use batch normalization. Defaults to True. tie_weights (bool, optional): Whether to tie encoder and decoder weights. Defaults to False. reconstruction_loss (str, optional): Type of reconstruction loss. Options: "mse", "bce", "l1", "huber", "smooth_l1", "kl_div", "cosine", "focal", "dice", "tversky", "ssim", "perceptual". Defaults to "mse". autoencoder_type (str, optional): Type of autoencoder architecture. Options: "classic", "variational", "beta_vae", "denoising", "sparse", "contractive", "recurrent". Defaults to "classic". beta (float, optional): Beta parameter for beta-VAE. Defaults to 1.0. temperature (float, optional): Temperature parameter for Gumbel softmax or other operations. Defaults to 1.0. noise_factor (float, optional): Noise factor for denoising autoencoders. Defaults to 0.1. rnn_type (str, optional): Type of RNN cell for recurrent autoencoders. Options: "lstm", "gru", "rnn". Defaults to "lstm". num_layers (int, optional): Number of RNN layers for recurrent autoencoders. Defaults to 2. bidirectional (bool, optional): Whether to use bidirectional RNN for encoding. Defaults to True. sequence_length (int, optional): Fixed sequence length. If None, supports variable length sequences. Defaults to None. teacher_forcing_ratio (float, optional): Ratio of teacher forcing during training for recurrent decoders. Defaults to 0.5. use_learnable_preprocessing (bool, optional): Whether to use learnable preprocessing. Defaults to False. preprocessing_type (str, optional): Type of learnable preprocessing. Options: "none", "neural_scaler", "normalizing_flow", "minmax_scaler", "robust_scaler", "yeo_johnson". Defaults to "none". preprocessing_hidden_dim (int, optional): Hidden dimension for preprocessing networks. Defaults to 64. preprocessing_num_layers (int, optional): Number of layers in preprocessing networks. Defaults to 2. learn_inverse_preprocessing (bool, optional): Whether to learn inverse preprocessing for reconstruction. Defaults to True. flow_coupling_layers (int, optional): Number of coupling layers for normalizing flows. Defaults to 4. **kwargs: Additional keyword arguments passed to the parent class. """ model_type = "autoencoder" def __init__( self, input_dim: int = 784, hidden_dims: List[int] = None, latent_dim: int = 64, activation: str = "relu", dropout_rate: float = 0.1, use_batch_norm: bool = True, tie_weights: bool = False, reconstruction_loss: str = "mse", autoencoder_type: str = "classic", beta: float = 1.0, temperature: float = 1.0, noise_factor: float = 0.1, # Recurrent autoencoder parameters rnn_type: str = "lstm", num_layers: int = 2, bidirectional: bool = True, sequence_length: Optional[int] = None, teacher_forcing_ratio: float = 0.5, # Deep learning preprocessing parameters use_learnable_preprocessing: bool = False, preprocessing_type: str = "none", preprocessing_hidden_dim: int = 64, preprocessing_num_layers: int = 2, learn_inverse_preprocessing: bool = True, flow_coupling_layers: int = 4, **kwargs, ): # Validate parameters if hidden_dims is None: hidden_dims = [512, 256, 128] # Extended activation functions valid_activations = [ "relu", "tanh", "sigmoid", "leaky_relu", "gelu", "swish", "silu", "elu", "prelu", "relu6", "hardtanh", "hardsigmoid", "hardswish", "mish", "softplus", "softsign", "tanhshrink", "threshold" ] if activation not in valid_activations: raise ValueError( f"`activation` must be one of {valid_activations}, got {activation}." ) # Extended loss functions valid_losses = [ "mse", "bce", "l1", "huber", "smooth_l1", "kl_div", "cosine", "focal", "dice", "tversky", "ssim", "perceptual" ] if reconstruction_loss not in valid_losses: raise ValueError( f"`reconstruction_loss` must be one of {valid_losses}, got {reconstruction_loss}." ) # Autoencoder types valid_types = ["classic", "variational", "beta_vae", "denoising", "sparse", "contractive", "recurrent"] if autoencoder_type not in valid_types: raise ValueError( f"`autoencoder_type` must be one of {valid_types}, got {autoencoder_type}." ) # RNN types for recurrent autoencoders valid_rnn_types = ["lstm", "gru", "rnn"] if rnn_type not in valid_rnn_types: raise ValueError( f"`rnn_type` must be one of {valid_rnn_types}, got {rnn_type}." ) if not (0.0 <= dropout_rate <= 1.0): raise ValueError(f"`dropout_rate` must be between 0.0 and 1.0, got {dropout_rate}.") if input_dim <= 0: raise ValueError(f"`input_dim` must be positive, got {input_dim}.") if latent_dim <= 0: raise ValueError(f"`latent_dim` must be positive, got {latent_dim}.") if not all(dim > 0 for dim in hidden_dims): raise ValueError("All dimensions in `hidden_dims` must be positive.") if beta <= 0: raise ValueError(f"`beta` must be positive, got {beta}.") if num_layers <= 0: raise ValueError(f"`num_layers` must be positive, got {num_layers}.") if not (0.0 <= teacher_forcing_ratio <= 1.0): raise ValueError(f"`teacher_forcing_ratio` must be between 0.0 and 1.0, got {teacher_forcing_ratio}.") if sequence_length is not None and sequence_length <= 0: raise ValueError(f"`sequence_length` must be positive when specified, got {sequence_length}.") # Preprocessing validation valid_preprocessing = [ "none", "neural_scaler", "normalizing_flow", "minmax_scaler", "robust_scaler", "yeo_johnson", ] if preprocessing_type not in valid_preprocessing: raise ValueError( f"`preprocessing_type` must be one of {valid_preprocessing}, got {preprocessing_type}." ) if preprocessing_hidden_dim <= 0: raise ValueError(f"`preprocessing_hidden_dim` must be positive, got {preprocessing_hidden_dim}.") if preprocessing_num_layers <= 0: raise ValueError(f"`preprocessing_num_layers` must be positive, got {preprocessing_num_layers}.") if flow_coupling_layers <= 0: raise ValueError(f"`flow_coupling_layers` must be positive, got {flow_coupling_layers}.") # Set configuration attributes self.input_dim = input_dim self.hidden_dims = hidden_dims self.latent_dim = latent_dim self.activation = activation self.dropout_rate = dropout_rate self.use_batch_norm = use_batch_norm self.tie_weights = tie_weights self.reconstruction_loss = reconstruction_loss self.autoencoder_type = autoencoder_type self.beta = beta self.temperature = temperature self.noise_factor = noise_factor self.rnn_type = rnn_type self.num_layers = num_layers self.bidirectional = bidirectional self.sequence_length = sequence_length self.teacher_forcing_ratio = teacher_forcing_ratio self.use_learnable_preprocessing = use_learnable_preprocessing self.preprocessing_type = preprocessing_type self.preprocessing_hidden_dim = preprocessing_hidden_dim self.preprocessing_num_layers = preprocessing_num_layers self.learn_inverse_preprocessing = learn_inverse_preprocessing self.flow_coupling_layers = flow_coupling_layers # Call parent constructor super().__init__(**kwargs) @property def decoder_dims(self) -> List[int]: """Get decoder dimensions (reverse of encoder hidden dims).""" return list(reversed(self.hidden_dims)) @property def is_variational(self) -> bool: """Check if this is a variational autoencoder.""" return self.autoencoder_type in ["variational", "beta_vae"] @property def is_denoising(self) -> bool: """Check if this is a denoising autoencoder.""" return self.autoencoder_type == "denoising" @property def is_sparse(self) -> bool: """Check if this is a sparse autoencoder.""" return self.autoencoder_type == "sparse" @property def is_contractive(self) -> bool: """Check if this is a contractive autoencoder.""" return self.autoencoder_type == "contractive" @property def is_recurrent(self) -> bool: """Check if this is a recurrent autoencoder.""" return self.autoencoder_type == "recurrent" @property def rnn_hidden_size(self) -> int: """Get the RNN hidden size (same as latent_dim for recurrent AE).""" return self.latent_dim @property def rnn_output_size(self) -> int: """Get the RNN output size considering bidirectionality.""" return self.latent_dim * (2 if self.bidirectional else 1) @property def has_preprocessing(self) -> bool: """Check if learnable preprocessing is enabled.""" return self.use_learnable_preprocessing and self.preprocessing_type != "none" @property def is_neural_scaler(self) -> bool: """Check if using neural scaler preprocessing.""" return self.preprocessing_type == "neural_scaler" @property def is_normalizing_flow(self) -> bool: """Check if using normalizing flow preprocessing.""" return self.preprocessing_type == "normalizing_flow" @property def is_minmax_scaler(self) -> bool: """Check if using learnable MinMax scaler preprocessing.""" return self.preprocessing_type == "minmax_scaler" @property def is_robust_scaler(self) -> bool: """Check if using learnable Robust scaler preprocessing.""" return self.preprocessing_type == "robust_scaler" @property def is_yeo_johnson(self) -> bool: """Check if using learnable Yeo-Johnson power transform preprocessing.""" return self.preprocessing_type == "yeo_johnson" def to_dict(self): """ Serializes this instance to a Python dictionary. """ output = super().to_dict() return output