autoencoder / modeling_autoencoder.py
amaye15's picture
Update modeling_autoencoder.py
7d4e3f9
raw
history blame
16.1 kB
from typing import Optional, Sequence
import torch
from dataclasses import dataclass
from torch import nn, Tensor
from transformers import PretrainedConfig, PreTrainedModel, AutoConfig, AutoModel
from transformers.utils import ModelOutput
#from huggingface_hub import notebook_login
#from transformers import AutoConfig, AutoModel
#from autoencoder_model.modeling_autoencoder import AutoEncoder, AutoEncoderConfig
#notebook_login()
# Register Huggingface Model
#AutoEncoderConfig.register_for_auto_class()
#AutoEncoder.register_for_auto_class("AutoModel")
#AutoConfig.register("autoencoder", AutoEncoderConfig)
#AutoModel.register(AutoEncoderConfig, AutoModel)
# Create Model
#autoencoder = AutoEncoder(AutoEncoderConfig())
#autoencoder.push_to_hub("autoencoder")
# Download Model
#config = AutoConfig.from_pretrained("amaye15/autoencoder", trust_remote_code = True)
#autoencoder = AutoModel.from_config(config, trust_remote_code = True)
# Stucture
# Example
# Model Outputs
# Model Configuration
# Model Layers
# Model
##########################################################################################
#################################### Outputs #############################################
##########################################################################################
@dataclass
class AutoencoderModelOutput(ModelOutput):
"""
Represents the output of an autoencoder model. This class holds various
important tensors that are the result of passing data through an autoencoder.
Attributes:
logits (torch.FloatTensor, optional): The reconstructed output from the autoencoder.
This is typically the direct output of the decoder part of the model.
labels (torch.FloatTensor, optional): The true labels associated with the input data,
if available. Useful for supervised training scenarios or evaluation.
hidden_state (torch.FloatTensor, optional): The encoded representation of the input data.
This is the output of the encoder part of the model and serves as a compressed
representation of the input data.
loss (torch.FloatTensor, optional): The computed loss value when comparing the reconstructed
output to the original input data. This is essential for training and evaluating the model's performance.
"""
logits: torch.FloatTensor = None
labels: torch.FloatTensor = None
hidden_state: torch.FloatTensor = None
loss: torch.FloatTensor = None
##########################################################################################
################################# Configuration ##########################################
##########################################################################################
class AutoEncoderConfig(PretrainedConfig):
"""
Configuration class for AutoEncoder. This class stores the parameters for the autoencoder model.
Attributes:
input_dim (int): The dimensionality of the input data. Default is 128.
latent_dim (int): The dimensionality of the latent representation. Default is 64.
layer_types (str): The type of layers used, e.g., 'linear', 'lstm', 'gru', 'rnn'. Default is 'linear'.
dropout_rate (float): The dropout rate applied after each layer (except for the last layer). Default is 0.1.
num_layers (int): The number of layers in the encoder/decoder. Default is 3.
compression_rate (float): Factor by which to compress the dimensions through layers. Default is 0.5.
bidirectional (bool): Whether the sequence layers should be bidirectional. Default is False.
embed (bool): Whether to use embedding for input data. If True, `vocab_size` and `max_position` must be specified. Default is False.
vocab_size (int): The size of the vocabulary. Required if `embed` is True.
max_position (int): The maximum position for positional encoding. Required if `embed` is True.
Raises:
ValueError: If `embed` is True and either `vocab_size` or `max_position` is not defined as an integer.
"""
model_type = "autoencoder"
def __init__(
self,
input_dim: int = 128,
latent_dim: int = 64,
layer_types: str = 'linear',
dropout_rate: float = 0.1,
num_layers: int = 3,
compression_rate: float = 0.5,
bidirectional: bool = False,
embed: bool = False,
vocab_size: int|bool = False,
max_position: int|bool = False,
pad_token_id: int = 0,
bos_token_id: int = 1,
eos_token_id: int = 2,
**kwargs
):
super().__init__(**kwargs)
self.input_dim = input_dim
self.latent_dim = latent_dim
self.layer_types = layer_types
self.dropout_rate = dropout_rate
self.num_layers = num_layers
self.compression_rate = compression_rate
self.bidirectional = bidirectional
self.embed = embed
self.vocab_size = vocab_size
self.max_position = max_position
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
if self.embed:
if not self.vocab_size and isinstance(self.vocab_size, int):
raise ValueError("vocab_size needs to be defined when embed is True - AutoEncoderConfig(embed = True, vocab_size = 10_000, max_postion = 512")
if not self.max_position and isinstance(self.max_position, int):
raise ValueError("max_position needs to be defined when embed is True - AutoEncoderConfig(embed = True, vocab_size = 10_000, max_postion = 512)")
##########################################################################################
############################# Block/Encoder/Decoder ######################################
##########################################################################################
def create_layers(
model_section: str,
layer_types: str,
input_dim: int,
latent_dim: int,
num_layers: int,
dropout_rate: float,
compression_rate: float,
bidirectional: bool,
classes: bool|int = False
) -> nn.Sequential:
"""
Creates a sequence of layers for the encoder or decoder part of the autoencoder.
Args:
model_section (str): A string indicating whether this is for 'encoder' or 'decoder'.
layer_types (str): The type of layers to include in the sequence.
input_dim (int): The input dimension for the first layer.
latent_dim (int): The target dimension for the latent representation.
num_layers (int): The number of layers to create.
dropout_rate (float): The dropout rate to apply between layers.
compression_rate (float): The compression rate for reducing dimensions through layers.
bidirectional (bool): Whether the RNN layers should be bidirectional.
classes (bool|int): If an integer is provided, it defines the output dimension of the last layer in the decoder.
It's ignored for the encoder or if the value is False.
Returns:
A nn.Sequential module containing the created layers. The configuration of these layers is determined by the arguments provided.
Raises:
ValueError: If certain layer type conditions are not met or if required parameters for specific configurations are missing.
"""
layers = [] # Initialize an empty list to store the layers.
current_dim = input_dim # Start with the initial input dimension.
# Lists to store input and output dimensions for each layer.
input_dimensions = []
output_dimensions = []
# Calculate input and output dimensions for each layer.
for _ in range(num_layers):
input_dimensions.append(current_dim) # Store current dimension.
next_dim = max(int(current_dim * compression_rate), latent_dim) # Calculate next dimension with compression.
current_dim = next_dim # Update current dimension.
output_dimensions.append(current_dim) # Store output dimension.
# Ensure the last layer's output dimension is the latent dimension.
output_dimensions[num_layers - 1] = latent_dim
# Adjust dimensions for decoder configuration.
if model_section == "decoder":
# Swap input and output dimensions for decoder.
input_dimensions, output_dimensions = output_dimensions, input_dimensions
input_dimensions.reverse() # Reverse the order for decoder stack.
output_dimensions.reverse()
# Set the final layer's dimension to classes if specified and valid.
if isinstance(classes, int) and not isinstance(classes, bool):
if bidirectional:
output_dimensions[-1] = classes//2
else:
output_dimensions[-1] = classes
# Adjust dimensions for bidirectional RNN layers.
if bidirectional and (layer_types in ['lstm', 'rnn', 'gru']):
output_dimensions = [2 * value for value in output_dimensions]
# Construct layers based on the specified layer type.
for idx, (input_dim, output_dim) in enumerate(zip(input_dimensions, output_dimensions)):
# Add layers according to the specified type.
if layer_types == 'linear':
layers.append(nn.Linear(input_dim, output_dim))
elif layer_types in ['lstm', 'rnn', 'gru']:
rnn_layer = getattr(nn, layer_types.upper()) # Dynamically get the RNN layer class.
half_output_dim = output_dim // (2 if bidirectional else 1)
if model_section == "decoder":
if idx == 0:
layers.append(rnn_layer(input_dim, half_output_dim, batch_first=True, bidirectional=bidirectional))
else:
layers.append(rnn_layer(input_dim*2, half_output_dim, batch_first=True, bidirectional=bidirectional))
else:
layers.append(rnn_layer(input_dim, half_output_dim, batch_first=True, bidirectional=bidirectional))
# Add dropout layer between layers, except for the last layer.
if (idx != num_layers - 1) and (dropout_rate is not None):
layers.append(nn.Dropout(dropout_rate))
# Return the sequence of layers as an nn.Sequential module.
return nn.Sequential(*layers)
##########################################################################################
##################################### Model ##############################################
##########################################################################################
class AutoEncoder(PreTrainedModel):
"""
AutoEncoder model for creating an encoder-decoder architecture.
Inherits from PreTrainedModel to utilize its pretrained model features from the Hugging Face library.
Args:
config (AutoEncoderConfig): The configuration instance with all model parameters.
"""
config_class = AutoEncoderConfig
def __init__(self, config: AutoEncoderConfig):
super(AutoEncoder, self).__init__(config)
# Embeddings
if config.embed:
# Word Embeddings
self.word_embeddings = nn.Embedding(config.vocab_size,
config.input_dim,
config.pad_token_id,)
# Postional Embeddings
self.position_embeddings = nn.Embedding(config.max_position,
config.input_dim,)
# Encoder
self.encoder = create_layers("encoder",
config.layer_types,
config.input_dim,
config.latent_dim,
config.num_layers,
config.dropout_rate,
config.compression_rate,
config.bidirectional,)
# Decoder
if config.embed:
# Assuming symmetry between encoder and decoder
self.decoder = create_layers("decoder",
config.layer_types,
config.input_dim,
config.latent_dim,
config.num_layers,
config.dropout_rate,
config.compression_rate,
config.bidirectional,
config.vocab_size,)
else:
# Assuming symmetry between encoder and decoder
self.decoder = create_layers("decoder",
config.layer_types,
config.input_dim,
config.latent_dim,
config.num_layers,
config.dropout_rate,
config.compression_rate,
config.bidirectional,)
def forward(self, input_ids: Tensor, position_ids: Optional[Tensor] = None, labels: Optional[Tensor] = None) -> Tensor:
# Define Data Class
outputs = AutoencoderModelOutput()
outputs.labels = labels if labels != None else input_ids
# Embeddings
if self.config.embed:
# Word Embeddings
input_embeddings = self.word_embeddings(input_ids)
# Positional Embeddings
seq_length = input_ids.size(1)
position_ids = position_ids or torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
position_embeddings = self.position_embeddings(position_ids)
# Combine Embeddings
input_ids = input_embeddings + position_embeddings
# Non-Linear Encoding & Decoding
if self.config.layer_types in ['lstm', 'rnn', 'gru']:
# Encoding
for layer in self.encoder:
if isinstance(layer, nn.LSTM):
input_ids, (h_n, c_n) = layer(input_ids)
print(input_ids.size())
elif isinstance(layer, nn.RNN) or isinstance(layer, nn.GRU):
input_ids, h_o = layer(input_ids)
else:
input_ids = layer(input_ids)
# Hidden Vector
outputs.hidden_state = input_ids
# Decoding
for layer in self.decoder:
if isinstance(layer, nn.LSTM):
input_ids, (h_n, c_n) = layer(input_ids)
print(input_ids.size())
elif isinstance(layer, nn.RNN) or isinstance(layer, nn.GRU):
input_ids, h_o = layer(input_ids)
else:
input_ids = layer(input_ids)
# Linear Encoding & Decoding
else:
# Encoding
input_ids = self.encoder(input_ids)
# Hidden Vector
outputs.hidden_state = input_ids
# Decoding
input_ids = self.decoder(input_ids)
outputs.logits = input_ids
# Choose loss function based on dtype
if torch.is_floating_point(outputs.labels):
loss_fn = nn.MSELoss()
outputs.loss = loss_fn(outputs.logits.view(-1), outputs.labels.view(-1))
elif not torch.is_floating_point(outputs.labels) and not torch.is_complex(outputs.labels):
loss_fn = nn.CrossEntropyLoss()
outputs.loss = loss_fn(outputs.logits.reshape(-1, self.config.vocab_size), outputs.labels.view(-1))
else:
raise ValueError("Unsupported tensor dtype for these loss functions")
return outputs