amaye15 commited on
Commit
c79f76e
·
1 Parent(s): ebc254a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -6
README.md CHANGED
@@ -20,6 +20,17 @@ from transformers import AutoConfig, AutoModel
20
 
21
  config = AutoConfig.from_pretrained("amaye15/autoencoder", trust_remote_code = True)
22
 
 
 
 
 
 
 
 
 
 
 
 
23
  ### Change Configuration
24
 
25
  model = AutoModel.from_config(config, trust_remote_code = True)
@@ -31,16 +42,12 @@ input_data = torch.rand((32, 10, 784)) # Adjust shape according to your needs
31
  with torch.no_grad(): # Assuming inference only
32
  output = model(input_data)
33
 
34
-
35
-
36
  ### To-Do
37
  # The `output` is a dictionary with 'encoder_final' and 'decoder_final' keys
38
- encoded_representation = output['encoder_final']
39
- reconstructed_data = output['decoder_final']
40
  ```
41
 
42
- Replace `your_model_directory` with the actual path where your `AutoEncoder` and `AutoEncoderConfig` classes are located.
43
-
44
  ## Training Data
45
  *Omitted - to be filled in with details about the training data used for the model.*
46
 
 
20
 
21
  config = AutoConfig.from_pretrained("amaye15/autoencoder", trust_remote_code = True)
22
 
23
+ # Let's say you want to change the input_dim and latent_dim
24
+ config.input_dim = 1024 # New input dimension
25
+ config.latent_dim = 64 # New latent dimension
26
+
27
+ # Similarly, update other parameters as needed
28
+ config.layer_types = 'gru' # Change layer types to 'gru'
29
+ config.dropout_rate = 0.2 # Update dropout rate
30
+ config.num_layers = 4 # Change the number of layers
31
+ config.compression_rate = 0.6 # Update compression rate
32
+ config.bidirectional = False # Change to unidirectional
33
+
34
  ### Change Configuration
35
 
36
  model = AutoModel.from_config(config, trust_remote_code = True)
 
42
  with torch.no_grad(): # Assuming inference only
43
  output = model(input_data)
44
 
 
 
45
  ### To-Do
46
  # The `output` is a dictionary with 'encoder_final' and 'decoder_final' keys
47
+ # encoded_representation = output['encoder_final']
48
+ # reconstructed_data = output['decoder_final']
49
  ```
50
 
 
 
51
  ## Training Data
52
  *Omitted - to be filled in with details about the training data used for the model.*
53