--- license: apache-2.0 datasets: - ambrosfitz/cnn-daily-grammar language: - en base_model: - google-t5/t5-base pipeline_tag: summarization --- # T5-CNN-Grammar-Enhanced ## Model Description A T5-base model fine-tuned on the CNN Daily Grammar dataset for enhanced summarization with grammatical structure awareness. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqGeneration tokenizer = AutoTokenizer.from_pretrained("username/t5-cnn-grammar-enhanced") model = AutoModelForSeq2SeqGeneration.from_pretrained("username/t5-cnn-grammar-enhanced") ``` ## Training Details - Base model: t5-base - Dataset: CNN Daily Grammar - Training type: Fine-tuning - Framework: PyTorch - Epochs: 10 - Batch size: 8 - Learning rate: 2e-5 - Loss: Focal Loss - Scheduler: Linear warmup - Best validation loss: 0.7759 ## Model Architecture - Encoder-decoder transformer - Grammar-enhanced input structure - Focal loss for detail retention ## Evaluation Results Final validation metrics: - Loss: 0.7759 - Strong performance on detail retention and factual accuracy ## Limitations - Limited to news article summarization - May omit specific numerical details - Best suited for formal news content ## License Apache 2.0