nickfraser commited on
Commit
dca9b6e
·
1 Parent(s): 8e3c05a

Updated QOp model to fuse SmoothQuant scales with input quantization

Browse files
Files changed (1) hide show
  1. math_model.py +4 -4
math_model.py CHANGED
@@ -47,9 +47,9 @@ class QuantLinear(nn.Module):
47
  # - multiply this sum with every weight zero-point (e.g., `torch.sum(quant_input, dim=-1) * self.weight_zp`
48
  # - Subtract from previous output (e.g., `quant_output -= torch.sum(quant_input, dim=-1) * self.weight_zp`)
49
  # - All other code is just to make sure the broadcasting semantics work correctly
50
- scaled_x = x * self.mul_factor
51
  quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True).to(torch.uint8)
52
- quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False).to(torch.int8)
 
53
  quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
54
  correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) * (-self.weight_zp).to(torch.uint8).view([1]*(quant_input.ndim-1) + [self.weight_zp.nelement()]) # Correct for weight zero-point
55
  quant_output = quant_output + correction
@@ -103,13 +103,13 @@ class QuantConv2d(nn.Module):
103
  # - multiply this sum with every weight zero-point (e.g., `sum * self.weight_zp`
104
  # - Subtract from previous output (e.g., `quant_output -= sum * self.weight_zp`)
105
  # - All other code is just to make sure the broadcasting semantics work correctly
106
- scaled_x = x * self.mul_factor
107
  quant_weight = quantize(self.conv2d.weight, self.weight_scale, self.weight_zp, is_asym=True).to(torch.uint8)
108
  b_shape = list(quant_weight.shape) # Used for weight zero-point correction
109
  b_shape[0] = 1 # Used for weight zero-point correction
110
  weight_cat = torch.ones((1,1,1,1)).broadcast_to(b_shape).to(torch.uint8) # Used for weight zero-point correction
111
  quant_weight = torch.cat((quant_weight,weight_cat),dim=0).to(torch.uint8) # Create extra output channel, used for weight zero-point correction
112
- quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False).to(torch.int8)
 
113
  quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
114
  correction = quant_output[:,-1,:,:] * (-self.weight_zp).to(torch.uint8).view([1, self.weight_zp.nelement()] + [1]*(quant_output.ndim-2)) # Correct zero-point for weight
115
  quant_output = quant_output[:,:-1,:,:] + correction
 
47
  # - multiply this sum with every weight zero-point (e.g., `torch.sum(quant_input, dim=-1) * self.weight_zp`
48
  # - Subtract from previous output (e.g., `quant_output -= torch.sum(quant_input, dim=-1) * self.weight_zp`)
49
  # - All other code is just to make sure the broadcasting semantics work correctly
 
50
  quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True).to(torch.uint8)
51
+ fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
52
+ quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
53
  quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
54
  correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) * (-self.weight_zp).to(torch.uint8).view([1]*(quant_input.ndim-1) + [self.weight_zp.nelement()]) # Correct for weight zero-point
55
  quant_output = quant_output + correction
 
103
  # - multiply this sum with every weight zero-point (e.g., `sum * self.weight_zp`
104
  # - Subtract from previous output (e.g., `quant_output -= sum * self.weight_zp`)
105
  # - All other code is just to make sure the broadcasting semantics work correctly
 
106
  quant_weight = quantize(self.conv2d.weight, self.weight_scale, self.weight_zp, is_asym=True).to(torch.uint8)
107
  b_shape = list(quant_weight.shape) # Used for weight zero-point correction
108
  b_shape[0] = 1 # Used for weight zero-point correction
109
  weight_cat = torch.ones((1,1,1,1)).broadcast_to(b_shape).to(torch.uint8) # Used for weight zero-point correction
110
  quant_weight = torch.cat((quant_weight,weight_cat),dim=0).to(torch.uint8) # Create extra output channel, used for weight zero-point correction
111
+ fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
112
+ quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
113
  quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
114
  correction = quant_output[:,-1,:,:] * (-self.weight_zp).to(torch.uint8).view([1, self.weight_zp.nelement()] + [1]*(quant_output.ndim-2)) # Correct zero-point for weight
115
  quant_output = quant_output[:,:-1,:,:] + correction