Prakamya Mishra
commited on
Commit
•
27651a9
1
Parent(s):
e76f89a
Upload RREADME and Scripts
Browse files- AMD-OLMo-1B-SFT-1st-phase.yaml +143 -0
- AMD-OLMo-1B-SFT-2nd-phase.yaml +143 -0
- AMD-OLMo-1B-dpo.yaml +44 -0
- AMD-OLMo-1B.yaml +0 -0
- README.md +293 -3
- dolma_v1_7_subset.txt +0 -0
- dpo_trainer.py +1268 -0
- prepare_sft_data.py +215 -0
AMD-OLMo-1B-SFT-1st-phase.yaml
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
run_name: AMD-OLMo-1B-SFT-1st-phase
|
2 |
+
seed: 6198
|
3 |
+
dry_run: false
|
4 |
+
|
5 |
+
wandb:
|
6 |
+
name: ${run_name}
|
7 |
+
project: AMD-OLMo
|
8 |
+
group: SFT
|
9 |
+
|
10 |
+
model:
|
11 |
+
d_model: 2048
|
12 |
+
n_heads: 16
|
13 |
+
n_layers: 16
|
14 |
+
mlp_ratio: 8
|
15 |
+
weight_tying: true
|
16 |
+
alibi: false
|
17 |
+
rope: true
|
18 |
+
flash_attention: false
|
19 |
+
attention_dropout: 0.0
|
20 |
+
attention_layer_norm: false
|
21 |
+
multi_query_attention: false
|
22 |
+
include_bias: false
|
23 |
+
block_type: sequential
|
24 |
+
layer_norm_type: default
|
25 |
+
layer_norm_with_affine: false
|
26 |
+
bias_for_layer_norm: false
|
27 |
+
attention_layer_norm_with_affine: false
|
28 |
+
activation_type: swiglu
|
29 |
+
residual_dropout: 0.0
|
30 |
+
embedding_dropout: 0.0
|
31 |
+
max_sequence_length: 2048
|
32 |
+
vocab_size: 50280
|
33 |
+
embedding_size: 50304
|
34 |
+
eos_token_id: 50279
|
35 |
+
pad_token_id: 1
|
36 |
+
init_device: meta
|
37 |
+
init_fn: mitchell
|
38 |
+
|
39 |
+
compile:
|
40 |
+
fullgraph: false
|
41 |
+
|
42 |
+
optimizer:
|
43 |
+
name: adamw
|
44 |
+
learning_rate: 2.0e-5
|
45 |
+
weight_decay: 0
|
46 |
+
betas:
|
47 |
+
- 0.9
|
48 |
+
- 0.95
|
49 |
+
metrics_log_interval: 10
|
50 |
+
|
51 |
+
scheduler:
|
52 |
+
name: linear_with_warmup
|
53 |
+
t_warmup: 200
|
54 |
+
alpha_f: 0.001
|
55 |
+
|
56 |
+
tokenizer:
|
57 |
+
identifier: tokenizers/allenai_eleuther-ai-gpt-neox-20b-pii-special.json
|
58 |
+
truncate_direction: right
|
59 |
+
|
60 |
+
save_folder: ./outputs/${run_name}/
|
61 |
+
save_overwrite: true
|
62 |
+
# Sharded checkpoints (best for restarts)
|
63 |
+
save_interval: 1000
|
64 |
+
save_num_checkpoints_to_keep: -1
|
65 |
+
# Unsharded checkpoints (for final storage)
|
66 |
+
save_interval_unsharded: 10000
|
67 |
+
save_num_unsharded_checkpoints_to_keep: -1
|
68 |
+
|
69 |
+
load_path: path_to_unsharded_pretrain_checkpoint
|
70 |
+
reset_trainer_state: true
|
71 |
+
|
72 |
+
max_duration: 3ep # train 3 epochs
|
73 |
+
global_train_batch_size: 128
|
74 |
+
device_train_microbatch_size: 8
|
75 |
+
|
76 |
+
precision: amp_bf16
|
77 |
+
|
78 |
+
fsdp:
|
79 |
+
wrapping_strategy: null
|
80 |
+
precision: mixed
|
81 |
+
|
82 |
+
max_grad_norm: 1.0
|
83 |
+
max_grad_norm_ratio: null
|
84 |
+
|
85 |
+
speed_monitor:
|
86 |
+
window_size: 20
|
87 |
+
|
88 |
+
eval_interval: ${save_interval}
|
89 |
+
eval_subset_num_batches: -1
|
90 |
+
device_eval_batch_size: ${device_train_microbatch_size}
|
91 |
+
evaluators:
|
92 |
+
- label: piqa
|
93 |
+
type: downstream
|
94 |
+
|
95 |
+
- label: hellaswag
|
96 |
+
type: downstream
|
97 |
+
|
98 |
+
- label: winogrande
|
99 |
+
type: downstream
|
100 |
+
|
101 |
+
- label: openbook_qa
|
102 |
+
type: downstream
|
103 |
+
|
104 |
+
# - label: boolq # requires implemention of the pmi_dc matrix
|
105 |
+
# type: downstream
|
106 |
+
|
107 |
+
- label: sciq
|
108 |
+
type: downstream
|
109 |
+
|
110 |
+
- label: arc_easy
|
111 |
+
type: downstream
|
112 |
+
|
113 |
+
# - label: arc_challenge # requires implemention of the pmi_dc matrix
|
114 |
+
# type: downstream
|
115 |
+
|
116 |
+
- label: copa
|
117 |
+
type: downstream
|
118 |
+
|
119 |
+
- label: rte
|
120 |
+
type: downstream
|
121 |
+
|
122 |
+
- label: commitment_bank
|
123 |
+
type: downstream
|
124 |
+
|
125 |
+
- label: mrpc
|
126 |
+
type: downstream
|
127 |
+
|
128 |
+
- label: sst2
|
129 |
+
type: downstream
|
130 |
+
|
131 |
+
data:
|
132 |
+
pad_direction: right
|
133 |
+
num_workers: 0
|
134 |
+
drop_last: true
|
135 |
+
pin_memory: true
|
136 |
+
prefetch_factor: 1
|
137 |
+
persistent_workers: true
|
138 |
+
timeout: 0
|
139 |
+
generate_attention_mask: true
|
140 |
+
paths:
|
141 |
+
- ./datasets/tulu/input_ids.npy
|
142 |
+
label_mask_paths:
|
143 |
+
- ./datasets/tulu/label_mask.npy
|
AMD-OLMo-1B-SFT-2nd-phase.yaml
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
run_name: AMD-OLMo-1B-SFT-2nd-phase
|
2 |
+
seed: 6198
|
3 |
+
dry_run: false
|
4 |
+
|
5 |
+
wandb:
|
6 |
+
name: ${run_name}
|
7 |
+
project: AMD-OLMo
|
8 |
+
group: SFT
|
9 |
+
|
10 |
+
model:
|
11 |
+
d_model: 2048
|
12 |
+
n_heads: 16
|
13 |
+
n_layers: 16
|
14 |
+
mlp_ratio: 8
|
15 |
+
weight_tying: true
|
16 |
+
alibi: false
|
17 |
+
rope: true
|
18 |
+
flash_attention: false
|
19 |
+
attention_dropout: 0.0
|
20 |
+
attention_layer_norm: false
|
21 |
+
multi_query_attention: false
|
22 |
+
include_bias: false
|
23 |
+
block_type: sequential
|
24 |
+
layer_norm_type: default
|
25 |
+
layer_norm_with_affine: false
|
26 |
+
bias_for_layer_norm: false
|
27 |
+
attention_layer_norm_with_affine: false
|
28 |
+
activation_type: swiglu
|
29 |
+
residual_dropout: 0.0
|
30 |
+
embedding_dropout: 0.0
|
31 |
+
max_sequence_length: 2048
|
32 |
+
vocab_size: 50280
|
33 |
+
embedding_size: 50304
|
34 |
+
eos_token_id: 50279
|
35 |
+
pad_token_id: 1
|
36 |
+
init_device: meta
|
37 |
+
init_fn: mitchell
|
38 |
+
|
39 |
+
compile:
|
40 |
+
fullgraph: false
|
41 |
+
|
42 |
+
optimizer:
|
43 |
+
name: adamw
|
44 |
+
learning_rate: 2.0e-5
|
45 |
+
weight_decay: 0
|
46 |
+
betas:
|
47 |
+
- 0.9
|
48 |
+
- 0.95
|
49 |
+
metrics_log_interval: 10
|
50 |
+
|
51 |
+
scheduler:
|
52 |
+
name: linear_with_warmup
|
53 |
+
t_warmup: 200
|
54 |
+
alpha_f: 0.001
|
55 |
+
|
56 |
+
tokenizer:
|
57 |
+
identifier: tokenizers/allenai_eleuther-ai-gpt-neox-20b-pii-special.json
|
58 |
+
truncate_direction: right
|
59 |
+
|
60 |
+
save_folder: ./outputs/${run_name}/
|
61 |
+
save_overwrite: true
|
62 |
+
# Sharded checkpoints (best for restarts)
|
63 |
+
save_interval: 1000
|
64 |
+
save_num_checkpoints_to_keep: -1
|
65 |
+
# Unsharded checkpoints (for final storage)
|
66 |
+
save_interval_unsharded: 10000
|
67 |
+
save_num_unsharded_checkpoints_to_keep: -1
|
68 |
+
|
69 |
+
load_path: path_to_unsharded_1st_phase_SFT_checkpoint
|
70 |
+
reset_trainer_state: true
|
71 |
+
|
72 |
+
max_duration: 3ep # train 3 epochs
|
73 |
+
global_train_batch_size: 512
|
74 |
+
device_train_microbatch_size: 8
|
75 |
+
|
76 |
+
precision: amp_bf16
|
77 |
+
|
78 |
+
fsdp:
|
79 |
+
wrapping_strategy: null
|
80 |
+
precision: mixed
|
81 |
+
|
82 |
+
max_grad_norm: 1.0
|
83 |
+
max_grad_norm_ratio: null
|
84 |
+
|
85 |
+
speed_monitor:
|
86 |
+
window_size: 20
|
87 |
+
|
88 |
+
eval_interval: ${save_interval}
|
89 |
+
eval_subset_num_batches: -1
|
90 |
+
device_eval_batch_size: ${device_train_microbatch_size}
|
91 |
+
evaluators:
|
92 |
+
- label: piqa
|
93 |
+
type: downstream
|
94 |
+
|
95 |
+
- label: hellaswag
|
96 |
+
type: downstream
|
97 |
+
|
98 |
+
- label: winogrande
|
99 |
+
type: downstream
|
100 |
+
|
101 |
+
- label: openbook_qa
|
102 |
+
type: downstream
|
103 |
+
|
104 |
+
# - label: boolq # requires implemention of the pmi_dc matrix
|
105 |
+
# type: downstream
|
106 |
+
|
107 |
+
- label: sciq
|
108 |
+
type: downstream
|
109 |
+
|
110 |
+
- label: arc_easy
|
111 |
+
type: downstream
|
112 |
+
|
113 |
+
# - label: arc_challenge # requires implemention of the pmi_dc matrix
|
114 |
+
# type: downstream
|
115 |
+
|
116 |
+
- label: copa
|
117 |
+
type: downstream
|
118 |
+
|
119 |
+
- label: rte
|
120 |
+
type: downstream
|
121 |
+
|
122 |
+
- label: commitment_bank
|
123 |
+
type: downstream
|
124 |
+
|
125 |
+
- label: mrpc
|
126 |
+
type: downstream
|
127 |
+
|
128 |
+
- label: sst2
|
129 |
+
type: downstream
|
130 |
+
|
131 |
+
data:
|
132 |
+
pad_direction: right
|
133 |
+
num_workers: 0
|
134 |
+
drop_last: true
|
135 |
+
pin_memory: true
|
136 |
+
prefetch_factor: 1
|
137 |
+
persistent_workers: true
|
138 |
+
timeout: 0
|
139 |
+
generate_attention_mask: true
|
140 |
+
paths:
|
141 |
+
- ./datasets/OpenHermes_WebInstructSub_CodeFeedBack/input_ids.npy
|
142 |
+
label_mask_paths:
|
143 |
+
- ./datasets/OpenHermes_WebInstructSub_CodeFeedBack/label_mask.npy
|
AMD-OLMo-1B-dpo.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytest: disable
|
2 |
+
# Model arguments
|
3 |
+
model_name_or_path: AMD-OLMo-1B-dpo
|
4 |
+
torch_dtype: null
|
5 |
+
use_flash_attention_2: false
|
6 |
+
|
7 |
+
chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
8 |
+
# Data training arguments
|
9 |
+
# For definitions, see: src/h4/training/config.py
|
10 |
+
dataset_mixer:
|
11 |
+
csarron/argilla-ultrafeedback-binarized-preferences-cleaned: 1.0
|
12 |
+
dataset_splits:
|
13 |
+
- train
|
14 |
+
- test
|
15 |
+
preprocessing_num_workers: 16
|
16 |
+
|
17 |
+
# DPOTrainer arguments
|
18 |
+
bf16: true
|
19 |
+
beta: 0.01
|
20 |
+
do_eval: true
|
21 |
+
evaluation_strategy: steps
|
22 |
+
eval_steps: 100
|
23 |
+
gradient_accumulation_steps: 2
|
24 |
+
gradient_checkpointing: true
|
25 |
+
gradient_checkpointing_kwargs:
|
26 |
+
use_reentrant: False
|
27 |
+
hub_model_id: AMD-OLMo-1B-dpo
|
28 |
+
learning_rate: 5.0e-5
|
29 |
+
log_level: info
|
30 |
+
logging_steps: 10
|
31 |
+
lr_scheduler_type: cosine
|
32 |
+
max_length: 1024
|
33 |
+
max_prompt_length: 512
|
34 |
+
num_train_epochs: 3
|
35 |
+
optim: adamw_torch
|
36 |
+
output_dir: data/AMD-OLMo-1B-dpo
|
37 |
+
per_device_train_batch_size: 8
|
38 |
+
per_device_eval_batch_size: 8
|
39 |
+
push_to_hub: false
|
40 |
+
save_strategy: "steps"
|
41 |
+
save_steps: 100
|
42 |
+
save_total_limit: 1
|
43 |
+
seed: 42
|
44 |
+
warmup_ratio: 0.1
|
AMD-OLMo-1B.yaml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README.md
CHANGED
@@ -1,3 +1,293 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- allenai/dolma
|
5 |
+
---
|
6 |
+
# AMD-OLMo
|
7 |
+
|
8 |
+
AMD-OLMo are a series of 1B language models trained from scratch by AMD on AMD Instinct™ MI250 GPUs. The training code used is based on [OLMo](https://github.com/allenai/OLMo).
|
9 |
+
We release the pre-trained model, supervised fine-tuned model, and DPO aligned model as follows:
|
10 |
+
|
11 |
+
- [AMD-OLMo-1B](https://huggingface.co/amd/AMD-OLMo-1B): Pre-trained on a subset of [Dolma v1.7](https://huggingface.co/datasets/allenai/dolma) that consists of 1.3 trillion tokens.
|
12 |
+
- [AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT): Supervised fine-tuned (SFT) on [Tulu V2](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) dataset (1st phase) and then [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5), [WebInstructSub](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub), and [Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback) datasets (2nd phase).
|
13 |
+
- [AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO): Aligned with human preferences using Direct Preference Optimization (DPO) on [UltraFeedback](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) dataset.
|
14 |
+
|
15 |
+
Description:
|
16 |
+
|
17 |
+
- **Hardware**: Each compute node consists of 4 AMD Instinct™ MI250 GPUs. We use 16 nodes for pretraining AMD-OLMo-1B
|
18 |
+
|
19 |
+
- **Training throughput**: 12,200 tokens/sec/gpu
|
20 |
+
|
21 |
+
- **Model architecture**: AMD-OLMo-1B is based on the model architecture and training set up of fully open source 1 billion version of [OLMo-1B](https://github.com/allenai/OLMo) with the details below:
|
22 |
+
|
23 |
+
| Parameter size | Number of layers | Number of heads | Hidden size | Context length | Vocabulary Size |
|
24 |
+
|-----------------:|:------------------:|:-----------------:|:-------------:|:----------------:|:----------------:|
|
25 |
+
| 1.2B | 16 | 16 | 2048 | 2048 | 50,280 |
|
26 |
+
|
27 |
+
- **Hyper-parameters**:
|
28 |
+
|Stage | LR schedule | Peak LR | Warmup steps |Epochs| Batch size (tokens) |
|
29 |
+
|------------:|:--------------:|:---------:|:--------------:|:------:|:---------------------:|
|
30 |
+
|Pretraining | Cosine | 4.0e-4 | 2000 | 1 | 4M |
|
31 |
+
|SFT Phase 1 | Linear | 2.0e-5 | 200 | 3 | 262K |
|
32 |
+
|SFT Phase 2 | Linear | 2.0e-5 | 200 | 3 | 1024K |
|
33 |
+
|DPO | Cosine | 4.0e-6 | 47 | 1 | 64K |
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
### PyTorch on AMD GPUs
|
38 |
+
For running pytorch on AMD GPUs you can use the following rocm docker as in [docker hub](https://hub.docker.com/r/rocm/pytorch)
|
39 |
+
|
40 |
+
```bash
|
41 |
+
docker pull rocm/pytorch:latest
|
42 |
+
# Inside docker
|
43 |
+
pip install transformers
|
44 |
+
```
|
45 |
+
|
46 |
+
### Use Example
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
50 |
+
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("amd/AMD-OLMo-1B-SFT").to("cuda") # remove .to("cuda") to load on cpu
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("amd/AMD-OLMo-1B-SFT")
|
53 |
+
|
54 |
+
prompt = "What is large language model?"
|
55 |
+
bos = tokenizer.eos_token
|
56 |
+
template = bos + "<|user|>\n{prompt}\n<|assistant|>\n"
|
57 |
+
|
58 |
+
input_text = template.format(prompt=prompt)
|
59 |
+
inputs = tokenizer([input_text], return_tensors='pt', return_token_type_ids=False).to("cuda")
|
60 |
+
outputs = model.generate(**inputs, max_new_tokens=1000, do_sample=True, top_k=50, top_p=0.95)
|
61 |
+
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
|
62 |
+
```
|
63 |
+
|
64 |
+
|
65 |
+
## Main Results
|
66 |
+
|
67 |
+
### Pretraining Results
|
68 |
+
|
69 |
+
| **Standard Benchmarks** | [TinyLLaMA-v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) (1.1B) | [MobiLLaMA-1B](https://huggingface.co/MBZUAI/MobiLlama-1B) (1.2B) | [OLMo-1B](https://huggingface.co/allenai/OLMo-1B-hf) (1.2B) | [OpenELM-1_1B](https://huggingface.co/apple/OpenELM-1_1B) (1.1B) | [OLMo-1B-0724-hf](https://huggingface.co/allenai/OLMo-1B-0724-hf) (1.2B) | [AMD-OLMo-1B](https://huggingface.co/amd/AMD-OLMo-1B) (1.2B) |
|
70 |
+
|---------------------:|:-----------------:|:-----------:|:-----------:|:---------------:|:---------------:|:-----------:|
|
71 |
+
| **arc_easy** | 55.47 | 56.65 | 57.28 | 55.43 | 56.65 | **63.64** |
|
72 |
+
| **arc_challenge** | 32.68 | 32.00 | 31.06 | 32.34 | 32.34 | **33.70** |
|
73 |
+
| **hellaswag** | 61.47 | 61.80 | 62.92 | 64.81 | **66.12** | 63.61 |
|
74 |
+
| **piqa** | 73.56 | 75.30 | 75.14 | **75.57** | 75.08 | **75.57** |
|
75 |
+
| **boolq** | 55.99 | 60.83 | 61.74 | 63.58 | **66.18** | 60.58 |
|
76 |
+
| **sciq** | 89.30 | 88.20 | 87.00 | 90.60 | 92.70 | **93.20** |
|
77 |
+
| **winogrande** | 59.43 | 59.27 | 59.98 | **61.72** | **61.72** | 61.64 |
|
78 |
+
| **openbookqa** | **36.80** | 35.40 | 36.20 | 36.20 | 35.60 | 35.80 |
|
79 |
+
| **mmlu (0-shot)** | 25.02 | 24.81 | 24.23 | 25.26 | **25.45** | 24.88 |
|
80 |
+
| **gsm8k (8-shot)** | 1.82 | 0.00 | 2.50 | 2.81 | **8.95** | 2.88 |
|
81 |
+
| **bbh (3-shot)** | **25.63** | 0.00 | **25.63** | 16.77 | 21.67 | 20.95 |
|
82 |
+
| **Average** | 47.02 | 44.93 | 47.61 | 47.73 | **49.31** | 48.77 |
|
83 |
+
|
84 |
+
|
85 |
+
### Instruction Tuning Results
|
86 |
+
|
87 |
+
| **Standard Benchmarks**|[TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) (1.1B)|[MobiLlama-1B-Chat](https://huggingface.co/MBZUAI/MobiLlama-1B-Chat) (1.2B)|[OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) (1.1B)|[AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT) (1.2B)|[AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO) (1.2B)|
|
88 |
+
|------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
89 |
+
| **arc_easy** | 54.42 | 57.41 | 52.44 | 63.68 | **64.31** |
|
90 |
+
| **arc_challenge** | 32.85 | 34.56 | **37.80** | 37.12 | 37.37 |
|
91 |
+
| **hellaswag** | 60.40 | 62.51 | **71.29** | 61.63 | 61.91 |
|
92 |
+
| **piqa** | 74.48 | **75.73** | 75.03 | 74.43 | 74.16 |
|
93 |
+
| **boolq** | 61.04 | 55.66 | **70.28** | 68.53 | 70.24 |
|
94 |
+
| **sciq** | 88.40 | 87.10 | 89.50 | 91.20 | **92.10** |
|
95 |
+
| **winogrande** | 60.54 | 60.77 | **62.19** | 60.22 | 60.62 |
|
96 |
+
| **openbookqa** | 37.20 | 36.80 | 39.20 | 37.40 | **40.20** |
|
97 |
+
| **mmlu** | 24.61 | 25.25 | 25.54 | 29.97 | **30.52** |
|
98 |
+
| **gsm8k (8-shot)**| 2.81 | 0.23 | 1.82 | **18.20** | 15.77 |
|
99 |
+
| **bbh (3-shot)** | **26.83** | 0.00 | 13.40 | 25.17 | 25.45 |
|
100 |
+
| **Average** | 47.60 | 45.09 | 48.95 | 51.60 | **52.06** |
|
101 |
+
|
102 |
+
|**Chat Benchmarks**|[TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) (1.1B)|[MobiLlama-1B-Chat](https://huggingface.co/MBZUAI/MobiLlama-1B-Chat) (1.2B)|[OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) (1.1B)|[AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT) (1.2B)|[AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO) (1.2B)|
|
103 |
+
|------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
104 |
+
| **AlpacaEval 1 (Win Rate)** | 50.81 | 34.90 | 37.72 | 50.12 | **54.22** |
|
105 |
+
| **AlpacaEval 2 (LC Win Rate)**| 1.54 | 1.59 | 0.49 | **3.88** | 2.37 |
|
106 |
+
| **MTBench** | 3.38 | 2.89 | - | **4.35** | 4.10 |
|
107 |
+
|
108 |
+
|**Responsible AI Benchmarks**|[TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) (1.1B)|[MobiLlama-1B-Chat](https://huggingface.co/MBZUAI/MobiLlama-1B-Chat) (1.2B)|[OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) (1.1B)|[AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT) (1.2B)|[AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO) (1.2B)|
|
109 |
+
|------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
110 |
+
| **ToxiGen** | 41.70 | **37.23** | 42.34 | 39.04 | 39.68 |
|
111 |
+
| **crows_pairs** | 60.35 | 58.50 | 59.93 | 60.29 | **61.00** |
|
112 |
+
| **TruthfulQA-mc2**| 37.92 | 38.46 | **45.84** | 37.45 | 40.06 |
|
113 |
+
|
114 |
+
*In generating tokens for chat benchmark evaluations, we use `max_length=2048` for AlpacaEval and `max_new_tokens=2048` for MTBench.
|
115 |
+
|
116 |
+
*All numbers in above tables were obtained from our evaluations.
|
117 |
+
|
118 |
+
|
119 |
+
## Evaluation
|
120 |
+
We use the following open source evaluation frameworks for evaluating our models:
|
121 |
+
- [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness): For evaluating on commonsense reasoning, multi-task understanding & responsible AI benchmarks
|
122 |
+
- [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval): For evaluating instruction-following capabilities of chat models.
|
123 |
+
- [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge): For evaluating multi-turn capabilities of chat models.
|
124 |
+
|
125 |
+
### Setup
|
126 |
+
```bash
|
127 |
+
# lm-eval-harness
|
128 |
+
git clone https://github.com/EleutherAI/lm-evaluation-harness
|
129 |
+
cd lm-evaluation-harness
|
130 |
+
pip install -e .
|
131 |
+
|
132 |
+
# AlpacaEval
|
133 |
+
pip install git+https://github.com/tatsu-lab/alpaca_eval
|
134 |
+
cd alpaca_eval
|
135 |
+
pip install -e .
|
136 |
+
|
137 |
+
# MT-Bench
|
138 |
+
git clone https://github.com/lm-sys/FastChat.git
|
139 |
+
cd FastChat
|
140 |
+
pip install -e ".[model_worker,llm_judge]"
|
141 |
+
```
|
142 |
+
|
143 |
+
### Run evaluation
|
144 |
+
```bash
|
145 |
+
# lm-eval-harness
|
146 |
+
HF_MODEL=amd/AMD-OLMo-1B-SFT-DPO
|
147 |
+
accelerate launch -m lm_eval --model hf \
|
148 |
+
--model_args pretrained=$HF_MODEL,trust_remote_code=True \
|
149 |
+
--tasks arc_easy,arc_challenge,hellaswag,piqa,boolq,sciq,winogrande,openbookqa,mmlu,gsm8k_cot,bbh_cot_fewshot,toxigen,truthfulqa,crows_pairs \
|
150 |
+
--device cuda \
|
151 |
+
--batch_size 32 \
|
152 |
+
--output_path ./lm-eval-results/$HF_MODEL
|
153 |
+
```
|
154 |
+
|
155 |
+
## Training
|
156 |
+
|
157 |
+
### Setup
|
158 |
+
```bash
|
159 |
+
WORK_DIR="<path_to_your_working_directory>"
|
160 |
+
cd $WORK_DIR
|
161 |
+
# Clone OLMo codebase:
|
162 |
+
git clone https://github.com/allenai/OLMo.git --branch v0.3.0
|
163 |
+
cd OLMo
|
164 |
+
# Clone AMD-OLMo that contains files to reproduce our model training
|
165 |
+
git clone https://huggingface.co/amd/AMD-OLMo
|
166 |
+
|
167 |
+
docker pull rocm/pytorch:latest
|
168 |
+
docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --shm-size 8G -v $WORK_DIR/OLMo:/OLMo -w /OLMo rocm/pytorch:latest
|
169 |
+
|
170 |
+
# Remove Line 17 as the docker already has ROCm PyTorch installed
|
171 |
+
sed -i '17d' pyproject.toml
|
172 |
+
pip install -e .[all]
|
173 |
+
```
|
174 |
+
|
175 |
+
### Download and prepare pretraining datasets
|
176 |
+
```bash
|
177 |
+
# Download
|
178 |
+
DATA_DIR=./datasets/dolma
|
179 |
+
mkdir -p $DATA_DIR
|
180 |
+
|
181 |
+
PARALLEL_DOWNLOADS="<number_of_parallel_downloads>"
|
182 |
+
cat "AMD-OLMo/dolma_v1_7_subset.txt" | xargs -n 1 -P $PARALLEL_DOWNLOADS wget -q -P $DATA_DIR
|
183 |
+
|
184 |
+
# Prepare
|
185 |
+
NUM_WORKERS="<number_of_workers>"
|
186 |
+
python scripts/prepare_memmap_dataset.py $DATA_DIR/*.json.gz -o $DATA_DIR/memmap_dataset --workers $NUM_WORKERS
|
187 |
+
```
|
188 |
+
|
189 |
+
### Download and prepare SFT datasets
|
190 |
+
```bash
|
191 |
+
# 1st phase SFT dataset
|
192 |
+
python AMD-OLMo/prepare_sft_data.py --output_dir ./datasets/tulu --tokenizer tokenizers/allenai_eleuther-ai-gpt-neox-20b-pii-special.json --dataset tulu
|
193 |
+
|
194 |
+
# 2nd phase SFT dataset
|
195 |
+
python AMD-OLMo/prepare_sft_data.py --output_dir ./datasets/OpenHermes_WebInstructSub_CodeFeedBack --tokenizer tokenizers/allenai_eleuther-ai-gpt-neox-20b-pii-special.json --dataset 2nd-phase
|
196 |
+
```
|
197 |
+
|
198 |
+
### Run Training
|
199 |
+
Pretrainig config: [AMD-OLMo-1B.yaml](AMD-OLMo-1B.yaml)
|
200 |
+
|
201 |
+
SFT config: [AMD-OLMo-1B-SFT-1st-phase.yaml](AMD-OLMo-1B-SFT-1st-phase.yaml) and [AMD-OLMo-1B-SFT-2nd-phase.yaml](AMD-OLMo-1B-SFT-2nd-phase.yaml)
|
202 |
+
```bash
|
203 |
+
# Single node
|
204 |
+
HSA_FORCE_FINE_GRAIN_PCIE=1 OMP_NUM_THREADS=128 NCCL_DEBUG=INFO torchrun --nproc_per_node=8 ./scripts/train.py AMD-OLMo/AMD-OLMo-1B.yaml
|
205 |
+
|
206 |
+
# Multiple nodes
|
207 |
+
HSA_FORCE_FINE_GRAIN_PCIE=1 OMP_NUM_THREADS=128 NCCL_DEBUG=INFO torchrun --nnodes=$nnodes --node-rank=$node_rank --master_addr=$master_addr --master_port=$master_port --nproc_per_node=8 ./scripts/train.py AMD-OLMo/AMD-OLMo-1B.yaml
|
208 |
+
```
|
209 |
+
|
210 |
+
### Run DPO Training
|
211 |
+
|
212 |
+
DPO recipe: [AMD-OLMo-1B-dpo.yaml](AMD-OLMo-1B-dpo.yaml).
|
213 |
+
```bash
|
214 |
+
# install trl library
|
215 |
+
git clone https://github.com/huggingface/trl.git -b v0.8.6
|
216 |
+
|
217 |
+
# replace dpo_trainer.py
|
218 |
+
cp AMD-OLMo/dpo_trainer.py trl/trl/trainer
|
219 |
+
|
220 |
+
pip install -e ./trl
|
221 |
+
|
222 |
+
# install alignment-handbook
|
223 |
+
git clone https://github.com/huggingface/alignment-handbook.git hf-align
|
224 |
+
# 70769f9 is the main branch on 2024-04-11.
|
225 |
+
cd hf-align && git checkout 70769f9 && cd ..
|
226 |
+
|
227 |
+
pip install -e ./hf-align
|
228 |
+
|
229 |
+
# Copy AMD OLMo DPO recipe to hf-align/recipes.
|
230 |
+
cp AMD-OLMo/AMD-OLMo-1B-dpo.yaml hf-align/recipes/
|
231 |
+
|
232 |
+
# Prepare the converted AMD-OLMo SFT Huggingface model to ckpt_dir.
|
233 |
+
ckpt_dir=amd/AMD-OLMo-1B-SFT
|
234 |
+
local_tokenizer_dir=${ckpt_dir}
|
235 |
+
|
236 |
+
# Set output checkpoint dir.
|
237 |
+
dpo_ckpt_dir=<your_output_checkpoint_dir>
|
238 |
+
|
239 |
+
accelerate launch --config_file hf-align/recipes/accelerate_configs/deepspeed_zero3.yaml \
|
240 |
+
hf-align/scripts/run_dpo.py hf-align/recipes/AMD-OLMo-1B-dpo.yaml \
|
241 |
+
--trust_remote_code=true \
|
242 |
+
--model_name_or_path=${ckpt_dir} \
|
243 |
+
--tokenizer_name_or_path=${local_tokenizer_dir} \
|
244 |
+
--output_dir=${dpo_ckpt_dir} \
|
245 |
+
--num_train_epochs=1 \
|
246 |
+
--learning_rate=4e-6 \
|
247 |
+
--beta=0.3 \
|
248 |
+
--loss_type=sigmoid
|
249 |
+
```
|
250 |
+
|
251 |
+
## Bias, Risks, and Limitations
|
252 |
+
|
253 |
+
- The models are being released for research purposes only and are not intended for use cases that require high levels of factuality, safety critical situations, health or medical applications, generating false information, facilitating toxic conversations.
|
254 |
+
- Model checkpoints are made accessible without any safety guarantees. It is crucial for users to conduct comprehensive evaluations and implement safety filtering mechanisms as per their respective use cases.
|
255 |
+
- It may be possible to prompt the model to generate content that may be factually inaccurate, harmful, violent, toxic, biased, or otherwise objectionable. Such content may also get generated by prompts that did not intend to produce output as such. Users are thus requested to be aware of this and exercise caution and responsible thinking when using the model.
|
256 |
+
- Multi-lingual abilities of the models have not been tested and thus may misunderstand and generate erroneous responses across different languages.
|
257 |
+
|
258 |
+
## Appendix
|
259 |
+
### Evaluation Metrics
|
260 |
+
| **Benchmark** | Metric |
|
261 |
+
|---------------------:|:-----------------:|
|
262 |
+
| **arc_easy** | Normalized Accuracy |
|
263 |
+
| **arc_challenge** | Normalized Accuracy |
|
264 |
+
| **hellaswag** | Normalized Accuracy |
|
265 |
+
| **piqa** | Accuracy |
|
266 |
+
| **boolq** | Accuracy |
|
267 |
+
| **sciq** | Accuracy |
|
268 |
+
| **winogrande** | Accuracy |
|
269 |
+
| **openbookqa** | Normalized Accuracy |
|
270 |
+
| **mmlu** | Accuracy |
|
271 |
+
| **gsm8k (8-shot)** | Exact Match (Flexible Extract) |
|
272 |
+
| **bbh (3-shot)** | Exact Match |
|
273 |
+
| **ToxiGen** | Accuracy |
|
274 |
+
| **crows_pairs** | PCT Stereotype |
|
275 |
+
| **TruthfulQA-mc2** | Accuracy |
|
276 |
+
| **AlpacaEval 1 (Win Rate)** | Win Rate (chatgpt_fn) |
|
277 |
+
| **AlpacaEval 2 (LC Win Rate)** | Length Control Win Rate (weighted_alpaca_eval_gpt4_turbo) |
|
278 |
+
| **MTBench** | Average score for single-answer grading (2 turns) |
|
279 |
+
|
280 |
+
#### License
|
281 |
+
Copyright (c) 2018-2024 Advanced Micro Devices, Inc. All Rights Reserved.
|
282 |
+
|
283 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
284 |
+
you may not use this file except in compliance with the License.
|
285 |
+
You may obtain a copy of the License at
|
286 |
+
|
287 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
288 |
+
|
289 |
+
Unless required by applicable law or agreed to in writing, software
|
290 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
291 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
292 |
+
See the License for the specific language governing permissions and
|
293 |
+
limitations under the License.
|
dolma_v1_7_subset.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dpo_trainer.py
ADDED
@@ -0,0 +1,1268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# (Modifications Copyright(C) [2024] Advanced Micro Devices, Inc. All rights reserved)
|
2 |
+
# DPO Authors: Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn 2023
|
3 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import inspect
|
17 |
+
import random
|
18 |
+
import warnings
|
19 |
+
from collections import defaultdict
|
20 |
+
from contextlib import contextmanager, nullcontext
|
21 |
+
from copy import deepcopy
|
22 |
+
from functools import wraps
|
23 |
+
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
import torch.nn.functional as F
|
29 |
+
from accelerate import PartialState
|
30 |
+
from accelerate.utils import is_deepspeed_available, tqdm
|
31 |
+
from datasets import Dataset
|
32 |
+
from torch.utils.data import DataLoader
|
33 |
+
from transformers import (
|
34 |
+
AutoModelForCausalLM,
|
35 |
+
DataCollator,
|
36 |
+
PreTrainedModel,
|
37 |
+
PreTrainedTokenizerBase,
|
38 |
+
Trainer,
|
39 |
+
TrainingArguments,
|
40 |
+
)
|
41 |
+
from transformers.trainer_callback import TrainerCallback
|
42 |
+
from transformers.trainer_utils import EvalLoopOutput
|
43 |
+
|
44 |
+
from ..import_utils import is_peft_available, is_wandb_available
|
45 |
+
from ..models import PreTrainedModelWrapper, create_reference_model
|
46 |
+
from .utils import (
|
47 |
+
DPODataCollatorWithPadding,
|
48 |
+
disable_dropout_in_model,
|
49 |
+
pad_to_length,
|
50 |
+
peft_module_casting_to_bf16,
|
51 |
+
trl_sanitze_kwargs_for_tagging,
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
if is_peft_available():
|
56 |
+
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training
|
57 |
+
|
58 |
+
|
59 |
+
if is_wandb_available():
|
60 |
+
import wandb
|
61 |
+
|
62 |
+
if is_deepspeed_available():
|
63 |
+
import deepspeed
|
64 |
+
|
65 |
+
|
66 |
+
class DPOTrainer(Trainer):
|
67 |
+
r"""
|
68 |
+
Initialize DPOTrainer.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
model (`transformers.PreTrainedModel`):
|
72 |
+
The model to train, preferably an `AutoModelForSequenceClassification`.
|
73 |
+
ref_model (`PreTrainedModelWrapper`):
|
74 |
+
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
|
75 |
+
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
|
76 |
+
beta (`float`, defaults to 0.1):
|
77 |
+
The beta factor in DPO loss. Higher beta means less divergence from the initial policy. For the IPO loss, beta is the regularization parameter denoted by tau in the paper.
|
78 |
+
label_smoothing (`float`, defaults to 0):
|
79 |
+
The robust DPO label smoothing parameter from the [cDPO](https://ericmitchell.ai/cdpo.pdf) report that should be between 0 and 0.5.
|
80 |
+
loss_type (`str`, defaults to `"sigmoid"`):
|
81 |
+
The type of DPO loss to use. Either `"sigmoid"` the default DPO loss,`"hinge"` loss from [SLiC](https://arxiv.org/abs/2305.10425) paper, `"ipo"` from [IPO](https://arxiv.org/abs/2310.12036) paper, or `"kto"` from the HALOs [report](https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf).
|
82 |
+
args (`transformers.TrainingArguments`):
|
83 |
+
The arguments to use for training.
|
84 |
+
data_collator (`transformers.DataCollator`):
|
85 |
+
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
|
86 |
+
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
|
87 |
+
label_pad_token_id (`int`, defaults to `-100`):
|
88 |
+
The label pad token id. This argument is required if you want to use the default data collator.
|
89 |
+
padding_value (`int`, defaults to `0`):
|
90 |
+
The padding value if it is different to the tokenizer's pad_token_id.
|
91 |
+
truncation_mode (`str`, defaults to `keep_end`):
|
92 |
+
The truncation mode to use, either `keep_end` or `keep_start`. This argument is required if you want to use the default data collator.
|
93 |
+
train_dataset (`datasets.Dataset`):
|
94 |
+
The dataset to use for training.
|
95 |
+
eval_dataset (`datasets.Dataset`):
|
96 |
+
The dataset to use for evaluation.
|
97 |
+
tokenizer (`transformers.PreTrainedTokenizerBase`):
|
98 |
+
The tokenizer to use for training. This argument is required if you want to use the default data collator.
|
99 |
+
model_init (`Callable[[], transformers.PreTrainedModel]`):
|
100 |
+
The model initializer to use for training. If None is specified, the default model initializer will be used.
|
101 |
+
callbacks (`List[transformers.TrainerCallback]`):
|
102 |
+
The callbacks to use for training.
|
103 |
+
optimizers (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
|
104 |
+
The optimizer and scheduler to use for training.
|
105 |
+
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
|
106 |
+
The function to use to preprocess the logits before computing the metrics.
|
107 |
+
max_length (`int`, defaults to `None`):
|
108 |
+
The maximum length of the sequences in the batch. This argument is required if you want to use the default data collator.
|
109 |
+
max_prompt_length (`int`, defaults to `None`):
|
110 |
+
The maximum length of the prompt. This argument is required if you want to use the default data collator.
|
111 |
+
max_target_length (`int`, defaults to `None`):
|
112 |
+
The maximum length of the target. This argument is required if you want to use the default data collator and your model is an encoder-decoder.
|
113 |
+
peft_config (`Dict`, defaults to `None`):
|
114 |
+
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model.
|
115 |
+
is_encoder_decoder (`Optional[bool]`, `optional`, defaults to `None`):
|
116 |
+
If no model is provided, we need to know if the model_init returns an encoder-decoder.
|
117 |
+
disable_dropout (`bool`, defaults to `True`):
|
118 |
+
Whether or not to disable dropouts in `model` and `ref_model`.
|
119 |
+
generate_during_eval (`bool`, defaults to `False`):
|
120 |
+
Whether to sample and log generations during evaluation step.
|
121 |
+
compute_metrics (`Callable[[EvalPrediction], Dict]`, *optional*):
|
122 |
+
The function to use to compute the metrics. Must take a `EvalPrediction` and return
|
123 |
+
a dictionary string to metric values.
|
124 |
+
precompute_ref_log_probs (`bool`, defaults to `False`):
|
125 |
+
Flag to precompute reference model log probabilities for training and evaluation datasets. This is useful if you want to train
|
126 |
+
without the reference model and reduce the total GPU memory needed.
|
127 |
+
dataset_num_proc (`Optional[int]`, *optional*):
|
128 |
+
The number of workers to use to tokenize the data. Defaults to None.
|
129 |
+
model_init_kwargs (`Optional[Dict]`, *optional*):
|
130 |
+
Dict of Optional kwargs to pass when instantiating the model from a string
|
131 |
+
ref_model_init_kwargs (`Optional[Dict]`, *optional*):
|
132 |
+
Dict of Optional kwargs to pass when instantiating the ref model from a string
|
133 |
+
model_adapter_name (`str`, defaults to `None`):
|
134 |
+
Name of the train target PEFT adapter, when using LoRA with multiple adapters.
|
135 |
+
ref_adapter_name (`str`, defaults to `None`):
|
136 |
+
Name of the reference PEFT adapter, when using LoRA with multiple adapters.
|
137 |
+
reference_free (`bool`):
|
138 |
+
If True, we ignore the _provided_ reference model and implicitly use a reference model that assigns equal probability to all responses.
|
139 |
+
force_use_ref_model (`bool`, defaults to `False`):
|
140 |
+
In case one passes a PEFT model for the active model and you want to use a different model for the ref_model, set this flag to `True`.
|
141 |
+
"""
|
142 |
+
|
143 |
+
_tag_names = ["trl", "dpo"]
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
|
148 |
+
ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
|
149 |
+
beta: float = 0.1,
|
150 |
+
label_smoothing: float = 0,
|
151 |
+
loss_type: Literal["sigmoid", "hinge", "ipo", "kto_pair"] = "sigmoid",
|
152 |
+
args: Optional[TrainingArguments] = None,
|
153 |
+
data_collator: Optional[DataCollator] = None,
|
154 |
+
label_pad_token_id: int = -100,
|
155 |
+
padding_value: Optional[int] = None,
|
156 |
+
truncation_mode: str = "keep_end",
|
157 |
+
train_dataset: Optional[Dataset] = None,
|
158 |
+
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
|
159 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
160 |
+
model_init: Optional[Callable[[], PreTrainedModel]] = None,
|
161 |
+
callbacks: Optional[List[TrainerCallback]] = None,
|
162 |
+
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
|
163 |
+
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
164 |
+
max_length: Optional[int] = None,
|
165 |
+
max_prompt_length: Optional[int] = None,
|
166 |
+
max_target_length: Optional[int] = None,
|
167 |
+
peft_config: Optional[Dict] = None,
|
168 |
+
is_encoder_decoder: Optional[bool] = None,
|
169 |
+
disable_dropout: bool = True,
|
170 |
+
generate_during_eval: bool = False,
|
171 |
+
compute_metrics: Optional[Callable[[EvalLoopOutput], Dict]] = None,
|
172 |
+
precompute_ref_log_probs: bool = False,
|
173 |
+
dataset_num_proc: Optional[int] = None,
|
174 |
+
model_init_kwargs: Optional[Dict] = None,
|
175 |
+
ref_model_init_kwargs: Optional[Dict] = None,
|
176 |
+
model_adapter_name: Optional[str] = None,
|
177 |
+
ref_adapter_name: Optional[str] = None,
|
178 |
+
reference_free: bool = False,
|
179 |
+
force_use_ref_model: bool = False,
|
180 |
+
):
|
181 |
+
if model_init_kwargs is None:
|
182 |
+
model_init_kwargs = {}
|
183 |
+
elif not isinstance(model, str):
|
184 |
+
raise ValueError("You passed model_kwargs to the DPOTrainer. But your model is already instantiated.")
|
185 |
+
|
186 |
+
if ref_model_init_kwargs is None:
|
187 |
+
ref_model_init_kwargs = {}
|
188 |
+
elif not isinstance(ref_model, str):
|
189 |
+
raise ValueError(
|
190 |
+
"You passed ref_model_kwargs to the DPOTrainer. But your ref_model is already instantiated."
|
191 |
+
)
|
192 |
+
|
193 |
+
if isinstance(model, str):
|
194 |
+
warnings.warn(
|
195 |
+
"You passed a model_id to the DPOTrainer. This will automatically create an "
|
196 |
+
"`AutoModelForCausalLM` or a `PeftModel` (if you passed a `peft_config`) for you."
|
197 |
+
)
|
198 |
+
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs)
|
199 |
+
|
200 |
+
if isinstance(ref_model, str):
|
201 |
+
warnings.warn(
|
202 |
+
"You passed a ref model_id to the DPOTrainer. This will automatically create an "
|
203 |
+
"`AutoModelForCausalLM`"
|
204 |
+
)
|
205 |
+
ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs)
|
206 |
+
|
207 |
+
# Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16`
|
208 |
+
# has been called in order to properly call autocast if needed.
|
209 |
+
self._peft_has_been_casted_to_bf16 = False
|
210 |
+
|
211 |
+
if not is_peft_available() and peft_config is not None:
|
212 |
+
raise ValueError(
|
213 |
+
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
|
214 |
+
)
|
215 |
+
elif is_peft_available() and peft_config is not None:
|
216 |
+
# if model is a peft model and we have a peft_config, we merge and unload it first
|
217 |
+
if isinstance(model, PeftModel):
|
218 |
+
model = model.merge_and_unload()
|
219 |
+
|
220 |
+
if ref_model is not None and not force_use_ref_model:
|
221 |
+
raise ValueError(
|
222 |
+
"You passed both a ref_model and a peft_config. For training PEFT adapters with DPO there is no need to pass a reference"
|
223 |
+
" model. Please pass `ref_model=None` in case you want to train PEFT adapters, or pass a ref_model with `force_use_ref_model=True` in DPOTrainer's init."
|
224 |
+
" if you want to use a different ref_model."
|
225 |
+
)
|
226 |
+
|
227 |
+
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False):
|
228 |
+
_support_gc_kwargs = hasattr(
|
229 |
+
args, "gradient_checkpointing_kwargs"
|
230 |
+
) and "gradient_checkpointing_kwargs" in list(
|
231 |
+
inspect.signature(prepare_model_for_kbit_training).parameters
|
232 |
+
)
|
233 |
+
|
234 |
+
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}
|
235 |
+
|
236 |
+
if _support_gc_kwargs:
|
237 |
+
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs
|
238 |
+
|
239 |
+
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)
|
240 |
+
elif getattr(args, "gradient_checkpointing", False):
|
241 |
+
# For backward compatibility with older versions of transformers
|
242 |
+
if hasattr(model, "enable_input_require_grads"):
|
243 |
+
model.enable_input_require_grads()
|
244 |
+
else:
|
245 |
+
|
246 |
+
def make_inputs_require_grad(module, input, output):
|
247 |
+
output.requires_grad_(True)
|
248 |
+
|
249 |
+
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
250 |
+
|
251 |
+
# get peft model with the given config
|
252 |
+
model = get_peft_model(model, peft_config)
|
253 |
+
if args.bf16 and getattr(model, "is_loaded_in_4bit", False):
|
254 |
+
peft_module_casting_to_bf16(model)
|
255 |
+
# If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager
|
256 |
+
self._peft_has_been_casted_to_bf16 = True
|
257 |
+
|
258 |
+
# For models that use gradient_checkpointing, we need to attach a hook that enables input
|
259 |
+
# to explicitly have `requires_grad=True`, otherwise training will either silently
|
260 |
+
# fail or completely fail.
|
261 |
+
elif getattr(args, "gradient_checkpointing", False):
|
262 |
+
# For backward compatibility with older versions of transformers
|
263 |
+
if hasattr(model, "enable_input_require_grads"):
|
264 |
+
model.enable_input_require_grads()
|
265 |
+
else:
|
266 |
+
|
267 |
+
def make_inputs_require_grad(module, input, output):
|
268 |
+
output.requires_grad_(True)
|
269 |
+
|
270 |
+
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
271 |
+
|
272 |
+
if generate_during_eval and not is_wandb_available():
|
273 |
+
raise ValueError(
|
274 |
+
"`generate_during_eval=True` requires Weights and Biases to be installed."
|
275 |
+
" Please install `wandb` to resolve."
|
276 |
+
)
|
277 |
+
|
278 |
+
if model is not None:
|
279 |
+
self.is_encoder_decoder = model.config.is_encoder_decoder
|
280 |
+
elif is_encoder_decoder is None:
|
281 |
+
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.")
|
282 |
+
else:
|
283 |
+
self.is_encoder_decoder = is_encoder_decoder
|
284 |
+
|
285 |
+
self.is_peft_model = is_peft_available() and isinstance(model, PeftModel)
|
286 |
+
self.model_adapter_name = model_adapter_name
|
287 |
+
self.ref_adapter_name = ref_adapter_name
|
288 |
+
self.reference_free = reference_free
|
289 |
+
|
290 |
+
if ref_model:
|
291 |
+
self.ref_model = ref_model
|
292 |
+
elif self.is_peft_model or precompute_ref_log_probs:
|
293 |
+
# The `model` with adapters turned off will be used as the reference model
|
294 |
+
self.ref_model = None
|
295 |
+
else:
|
296 |
+
self.ref_model = create_reference_model(model)
|
297 |
+
|
298 |
+
if tokenizer is None:
|
299 |
+
raise ValueError("tokenizer must be specified to tokenize a DPO dataset.")
|
300 |
+
if max_length is None:
|
301 |
+
warnings.warn(
|
302 |
+
"`max_length` is not set in the DPOTrainer's init"
|
303 |
+
" it will default to `512` by default, but you should do it yourself in the future.",
|
304 |
+
UserWarning,
|
305 |
+
)
|
306 |
+
max_length = 512
|
307 |
+
if max_prompt_length is None:
|
308 |
+
warnings.warn(
|
309 |
+
"`max_prompt_length` is not set in the DPOTrainer's init"
|
310 |
+
" it will default to `128` by default, but you should do it yourself in the future.",
|
311 |
+
UserWarning,
|
312 |
+
)
|
313 |
+
max_prompt_length = 128
|
314 |
+
|
315 |
+
if max_target_length is None and self.is_encoder_decoder:
|
316 |
+
warnings.warn(
|
317 |
+
"When using an encoder decoder architecture, you should set `max_target_length` in the DPOTrainer's init"
|
318 |
+
" it will default to `128` by default, but you should do it yourself in the future.",
|
319 |
+
UserWarning,
|
320 |
+
)
|
321 |
+
max_target_length = 128
|
322 |
+
|
323 |
+
if data_collator is None:
|
324 |
+
data_collator = DPODataCollatorWithPadding(
|
325 |
+
pad_token_id=tokenizer.pad_token_id,
|
326 |
+
label_pad_token_id=label_pad_token_id,
|
327 |
+
is_encoder_decoder=self.is_encoder_decoder,
|
328 |
+
)
|
329 |
+
|
330 |
+
if args.remove_unused_columns:
|
331 |
+
args.remove_unused_columns = False
|
332 |
+
# warn users
|
333 |
+
warnings.warn(
|
334 |
+
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your TrainingArguments"
|
335 |
+
" we have set it for you, but you should do it yourself in the future.",
|
336 |
+
UserWarning,
|
337 |
+
)
|
338 |
+
|
339 |
+
self.use_dpo_data_collator = True
|
340 |
+
else:
|
341 |
+
self.use_dpo_data_collator = False
|
342 |
+
|
343 |
+
if disable_dropout:
|
344 |
+
disable_dropout_in_model(model)
|
345 |
+
if self.ref_model is not None:
|
346 |
+
disable_dropout_in_model(self.ref_model)
|
347 |
+
|
348 |
+
self.max_length = max_length
|
349 |
+
self.generate_during_eval = generate_during_eval
|
350 |
+
self.label_pad_token_id = label_pad_token_id
|
351 |
+
self.padding_value = padding_value if padding_value is not None else tokenizer.pad_token_id
|
352 |
+
self.max_prompt_length = max_prompt_length
|
353 |
+
self.truncation_mode = truncation_mode
|
354 |
+
self.max_target_length = max_target_length
|
355 |
+
self.tokenizer = tokenizer
|
356 |
+
self.precompute_ref_log_probs = precompute_ref_log_probs
|
357 |
+
|
358 |
+
# Since ref_logs are precomputed on the first call to get_train/eval_dataloader
|
359 |
+
# keep track of first called to avoid computation of future calls
|
360 |
+
self._precomputed_train_ref_log_probs = False
|
361 |
+
self._precomputed_eval_ref_log_probs = False
|
362 |
+
|
363 |
+
if loss_type in ["hinge", "ipo", "kto_pair"] and label_smoothing > 0:
|
364 |
+
warnings.warn(
|
365 |
+
"You are using a loss type that does not support label smoothing. Ignoring label_smoothing parameter."
|
366 |
+
)
|
367 |
+
|
368 |
+
self.beta = beta
|
369 |
+
self.label_smoothing = label_smoothing
|
370 |
+
self.loss_type = loss_type
|
371 |
+
|
372 |
+
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
373 |
+
|
374 |
+
self.dataset_num_proc = dataset_num_proc
|
375 |
+
|
376 |
+
# Compute that only on the main process for faster data processing.
|
377 |
+
# see: https://github.com/huggingface/trl/pull/1255
|
378 |
+
with PartialState().local_main_process_first():
|
379 |
+
# tokenize the dataset
|
380 |
+
train_dataset = train_dataset.map(self.tokenize_row, num_proc=self.dataset_num_proc)
|
381 |
+
if eval_dataset is not None:
|
382 |
+
eval_dataset = eval_dataset.map(self.tokenize_row, num_proc=self.dataset_num_proc)
|
383 |
+
|
384 |
+
super().__init__(
|
385 |
+
model=model,
|
386 |
+
args=args,
|
387 |
+
data_collator=data_collator,
|
388 |
+
train_dataset=train_dataset,
|
389 |
+
eval_dataset=eval_dataset,
|
390 |
+
tokenizer=tokenizer,
|
391 |
+
model_init=model_init,
|
392 |
+
compute_metrics=compute_metrics,
|
393 |
+
callbacks=callbacks,
|
394 |
+
optimizers=optimizers,
|
395 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
396 |
+
)
|
397 |
+
|
398 |
+
# Add tags for models that have been loaded with the correct transformers version
|
399 |
+
if hasattr(self.model, "add_model_tags"):
|
400 |
+
self.model.add_model_tags(self._tag_names)
|
401 |
+
|
402 |
+
if not hasattr(self, "accelerator"):
|
403 |
+
raise AttributeError(
|
404 |
+
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
|
405 |
+
)
|
406 |
+
|
407 |
+
# Deepspeed Zero-3 does not support precompute_ref_log_probs
|
408 |
+
if self.is_deepspeed_enabled:
|
409 |
+
if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs:
|
410 |
+
raise ValueError(
|
411 |
+
"You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`."
|
412 |
+
)
|
413 |
+
|
414 |
+
if self.ref_model is None:
|
415 |
+
if not (self.is_peft_model or self.precompute_ref_log_probs):
|
416 |
+
raise ValueError(
|
417 |
+
"No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`"
|
418 |
+
)
|
419 |
+
else:
|
420 |
+
if self.is_deepspeed_enabled:
|
421 |
+
self.ref_model = self._prepare_deepspeed(self.ref_model)
|
422 |
+
else:
|
423 |
+
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
424 |
+
|
425 |
+
def _prepare_deepspeed(self, model: PreTrainedModelWrapper):
|
426 |
+
# Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473
|
427 |
+
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
|
428 |
+
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config)
|
429 |
+
|
430 |
+
if model is not None:
|
431 |
+
if hasattr(model, "config"):
|
432 |
+
hidden_size = (
|
433 |
+
max(model.config.hidden_sizes)
|
434 |
+
if getattr(model.config, "hidden_sizes", None)
|
435 |
+
else getattr(model.config, "hidden_size", None)
|
436 |
+
)
|
437 |
+
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
|
438 |
+
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0`
|
439 |
+
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
|
440 |
+
config_kwargs.update(
|
441 |
+
{
|
442 |
+
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
|
443 |
+
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
|
444 |
+
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
|
445 |
+
}
|
446 |
+
)
|
447 |
+
|
448 |
+
# If ZeRO-3 is used, we shard both the active and reference model.
|
449 |
+
# Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0)
|
450 |
+
if config_kwargs["zero_optimization"]["stage"] != 3:
|
451 |
+
config_kwargs["zero_optimization"]["stage"] = 0
|
452 |
+
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
|
453 |
+
model.eval()
|
454 |
+
return model
|
455 |
+
|
456 |
+
def get_train_dataloader(self) -> DataLoader:
|
457 |
+
"""
|
458 |
+
Returns the training [`~torch.utils.data.DataLoader`].
|
459 |
+
|
460 |
+
Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`.
|
461 |
+
"""
|
462 |
+
|
463 |
+
if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs:
|
464 |
+
dataloader_params = {
|
465 |
+
"batch_size": self.args.per_device_train_batch_size,
|
466 |
+
"collate_fn": self.data_collator,
|
467 |
+
"num_workers": self.args.dataloader_num_workers,
|
468 |
+
"pin_memory": self.args.dataloader_pin_memory,
|
469 |
+
"shuffle": False,
|
470 |
+
}
|
471 |
+
|
472 |
+
# prepare dataloader
|
473 |
+
data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params))
|
474 |
+
|
475 |
+
reference_chosen_logps = []
|
476 |
+
reference_rejected_logps = []
|
477 |
+
for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"):
|
478 |
+
reference_chosen_logp, reference_rejected_logp = self.compute_reference_log_probs(padded_batch)
|
479 |
+
reference_chosen_logp, reference_rejected_logp = self.accelerator.gather_for_metrics(
|
480 |
+
(reference_chosen_logp, reference_rejected_logp)
|
481 |
+
)
|
482 |
+
reference_chosen_logps.append(reference_chosen_logp.cpu())
|
483 |
+
reference_rejected_logps.append(reference_rejected_logp.cpu())
|
484 |
+
|
485 |
+
all_reference_chosen_logps = torch.cat(reference_chosen_logps).float().numpy()
|
486 |
+
all_reference_rejected_logps = torch.cat(reference_rejected_logps).float().numpy()
|
487 |
+
|
488 |
+
self.train_dataset = self.train_dataset.add_column(
|
489 |
+
name="reference_chosen_logps", column=all_reference_chosen_logps
|
490 |
+
)
|
491 |
+
self.train_dataset = self.train_dataset.add_column(
|
492 |
+
name="reference_rejected_logps", column=all_reference_rejected_logps
|
493 |
+
)
|
494 |
+
|
495 |
+
self._precomputed_train_ref_log_probs = True
|
496 |
+
|
497 |
+
return super().get_train_dataloader()
|
498 |
+
|
499 |
+
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
|
500 |
+
"""
|
501 |
+
Returns the evaluation [`~torch.utils.data.DataLoader`].
|
502 |
+
|
503 |
+
Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`.
|
504 |
+
|
505 |
+
Args:
|
506 |
+
eval_dataset (`torch.utils.data.Dataset`, *optional*):
|
507 |
+
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
|
508 |
+
by the `model.forward()` method are automatically removed. It must implement `__len__`.
|
509 |
+
"""
|
510 |
+
if eval_dataset is None and self.eval_dataset is None:
|
511 |
+
raise ValueError("Trainer: evaluation requires an eval_dataset.")
|
512 |
+
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
|
513 |
+
|
514 |
+
if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs:
|
515 |
+
dataloader_params = {
|
516 |
+
"batch_size": self.args.per_device_eval_batch_size,
|
517 |
+
"collate_fn": self.data_collator,
|
518 |
+
"num_workers": self.args.dataloader_num_workers,
|
519 |
+
"pin_memory": self.args.dataloader_pin_memory,
|
520 |
+
"shuffle": False,
|
521 |
+
}
|
522 |
+
|
523 |
+
# prepare dataloader
|
524 |
+
data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params))
|
525 |
+
|
526 |
+
reference_chosen_logps = []
|
527 |
+
reference_rejected_logps = []
|
528 |
+
for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"):
|
529 |
+
reference_chosen_logp, reference_rejected_logp = self.compute_reference_log_probs(padded_batch)
|
530 |
+
reference_chosen_logp, reference_rejected_logp = self.accelerator.gather_for_metrics(
|
531 |
+
(reference_chosen_logp, reference_rejected_logp)
|
532 |
+
)
|
533 |
+
reference_chosen_logps.append(reference_chosen_logp.cpu())
|
534 |
+
reference_rejected_logps.append(reference_rejected_logp.cpu())
|
535 |
+
|
536 |
+
all_reference_chosen_logps = torch.cat(reference_chosen_logps).float().numpy()
|
537 |
+
all_reference_rejected_logps = torch.cat(reference_rejected_logps).float().numpy()
|
538 |
+
|
539 |
+
eval_dataset = eval_dataset.add_column(name="reference_chosen_logps", column=all_reference_chosen_logps)
|
540 |
+
eval_dataset = eval_dataset.add_column(
|
541 |
+
name="reference_rejected_logps", column=all_reference_rejected_logps
|
542 |
+
)
|
543 |
+
|
544 |
+
# Save calculated reference_chosen_logps and reference_rejected_logps to the eval_dataset for subsequent runs
|
545 |
+
if self.eval_dataset is not None:
|
546 |
+
self.eval_dataset = eval_dataset
|
547 |
+
self._precomputed_eval_ref_log_probs = True
|
548 |
+
|
549 |
+
return super().get_eval_dataloader(eval_dataset=eval_dataset)
|
550 |
+
|
551 |
+
def build_tokenized_answer(self, prompt, answer):
|
552 |
+
"""
|
553 |
+
Llama tokenizer does satisfy `enc(a + b) = enc(a) + enc(b)`.
|
554 |
+
It does ensure `enc(a + b) = enc(a) + enc(a + b)[len(enc(a)):]`.
|
555 |
+
Reference:
|
556 |
+
https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257
|
557 |
+
"""
|
558 |
+
|
559 |
+
full_tokenized = self.tokenizer(prompt + answer, add_special_tokens=False)
|
560 |
+
prompt_input_ids = self.tokenizer(prompt, add_special_tokens=False)["input_ids"]
|
561 |
+
|
562 |
+
answer_input_ids = full_tokenized["input_ids"][len(prompt_input_ids) :]
|
563 |
+
answer_attention_mask = full_tokenized["attention_mask"][len(prompt_input_ids) :]
|
564 |
+
|
565 |
+
# Concat tokens to form `enc(a) + enc(a + b)[len(enc(a)):]`
|
566 |
+
full_concat_input_ids = np.concatenate([prompt_input_ids, answer_input_ids])
|
567 |
+
|
568 |
+
# Prepare input tokens for token by token comparison
|
569 |
+
full_input_ids = np.array(full_tokenized["input_ids"])
|
570 |
+
|
571 |
+
if len(full_input_ids) != len(full_concat_input_ids):
|
572 |
+
raise ValueError("Prompt input ids and answer input ids should have the same length.")
|
573 |
+
|
574 |
+
# On some tokenizers, like Llama-2 tokenizer, there are occasions where tokens
|
575 |
+
# can be merged together when tokenizing prompt+answer. This could result
|
576 |
+
# on the last token from the prompt being different when tokenized on its own
|
577 |
+
# vs when done as prompt+answer.
|
578 |
+
response_token_ids_start_idx = len(prompt_input_ids)
|
579 |
+
|
580 |
+
# If tokenized prompt is different than both prompt+answer, then it means the
|
581 |
+
# last token has changed due to merging.
|
582 |
+
if prompt_input_ids != full_tokenized["input_ids"][:response_token_ids_start_idx]:
|
583 |
+
response_token_ids_start_idx -= 1
|
584 |
+
|
585 |
+
prompt_input_ids = full_tokenized["input_ids"][:response_token_ids_start_idx]
|
586 |
+
prompt_attention_mask = full_tokenized["attention_mask"][:response_token_ids_start_idx]
|
587 |
+
|
588 |
+
if len(prompt_input_ids) != len(prompt_attention_mask):
|
589 |
+
raise ValueError("Prompt input ids and attention mask should have the same length.")
|
590 |
+
|
591 |
+
answer_input_ids = full_tokenized["input_ids"][response_token_ids_start_idx:]
|
592 |
+
answer_attention_mask = full_tokenized["attention_mask"][response_token_ids_start_idx:]
|
593 |
+
|
594 |
+
return dict(
|
595 |
+
prompt_input_ids=prompt_input_ids,
|
596 |
+
prompt_attention_mask=prompt_attention_mask,
|
597 |
+
input_ids=answer_input_ids,
|
598 |
+
attention_mask=answer_attention_mask,
|
599 |
+
)
|
600 |
+
|
601 |
+
def tokenize_row(self, feature, model: Optional[Union[PreTrainedModel, nn.Module]] = None) -> Dict:
|
602 |
+
"""Tokenize a single row from a DPO specific dataset.
|
603 |
+
|
604 |
+
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation
|
605 |
+
in case the prompt + chosen or prompt + rejected responses is/are too long. First
|
606 |
+
we truncate the prompt; if we're still too long, we truncate the chosen/rejected.
|
607 |
+
|
608 |
+
We also create the labels for the chosen/rejected responses, which are of length equal to
|
609 |
+
the sum of the length of the prompt and the chosen/rejected response, with
|
610 |
+
label_pad_token_id for the prompt tokens.
|
611 |
+
"""
|
612 |
+
batch = {}
|
613 |
+
prompt = feature["prompt"]
|
614 |
+
chosen = feature["chosen"]
|
615 |
+
rejected = feature["rejected"]
|
616 |
+
|
617 |
+
if not self.tokenizer.bos_token_id:
|
618 |
+
self.tokenizer.bos_token_id = self.tokenizer.eos_token_id
|
619 |
+
self.tokenizer.add_special_tokens({"bos_token": self.tokenizer.eos_token})
|
620 |
+
|
621 |
+
if not self.is_encoder_decoder:
|
622 |
+
# Check issues below for more details
|
623 |
+
# 1. https://github.com/huggingface/trl/issues/907
|
624 |
+
# 2. https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257
|
625 |
+
# 3. https://github.com/LianjiaTech/BELLE/issues/337
|
626 |
+
|
627 |
+
if not isinstance(prompt, str):
|
628 |
+
raise ValueError(f"prompt should be an str but got {type(prompt)}")
|
629 |
+
prompt_tokens = self.tokenizer(prompt, add_special_tokens=False)
|
630 |
+
prompt_tokens = {f"prompt_{k}": v for k, v in prompt_tokens.items()}
|
631 |
+
|
632 |
+
if not isinstance(chosen, str):
|
633 |
+
raise ValueError(f"chosen should be an str but got {type(chosen)}")
|
634 |
+
chosen_tokens = self.build_tokenized_answer(prompt, chosen)
|
635 |
+
|
636 |
+
if not isinstance(rejected, str):
|
637 |
+
raise ValueError(f"rejected should be an str but got {type(rejected)}")
|
638 |
+
rejected_tokens = self.build_tokenized_answer(prompt, rejected)
|
639 |
+
|
640 |
+
# Last prompt token might get merged by tokenizer and
|
641 |
+
# it should not be included for generation if that happens
|
642 |
+
prompt_len_input_ids = len(prompt_tokens["prompt_input_ids"])
|
643 |
+
|
644 |
+
chosen_prompt_len_input_ids = len(chosen_tokens["prompt_input_ids"])
|
645 |
+
rejected_prompt_len_input_ids = len(rejected_tokens["prompt_input_ids"])
|
646 |
+
prompt_len_input_ids = min(chosen_prompt_len_input_ids, rejected_prompt_len_input_ids)
|
647 |
+
|
648 |
+
for k, v in prompt_tokens.items():
|
649 |
+
prompt_tokens[k] = v[:prompt_len_input_ids]
|
650 |
+
|
651 |
+
# Make sure prompts only have one different token at most an
|
652 |
+
# and length only differs by 1 at most
|
653 |
+
num_diff_tokens = sum(
|
654 |
+
[a != b for a, b in zip(chosen_tokens["prompt_input_ids"], rejected_tokens["prompt_input_ids"])]
|
655 |
+
)
|
656 |
+
num_diff_len = abs(chosen_prompt_len_input_ids - rejected_prompt_len_input_ids)
|
657 |
+
if num_diff_tokens > 1 or num_diff_len > 1:
|
658 |
+
raise ValueError(
|
659 |
+
"Chosen and rejected prompt_input_ids might only differ on the "
|
660 |
+
"last token due to tokenizer merge ops."
|
661 |
+
)
|
662 |
+
|
663 |
+
# add BOS token to head of prompt
|
664 |
+
prompt_tokens["prompt_input_ids"] = [self.tokenizer.bos_token_id] + prompt_tokens["prompt_input_ids"]
|
665 |
+
chosen_tokens["prompt_input_ids"] = [self.tokenizer.bos_token_id] + chosen_tokens["prompt_input_ids"]
|
666 |
+
rejected_tokens["prompt_input_ids"] = [self.tokenizer.bos_token_id] + rejected_tokens["prompt_input_ids"]
|
667 |
+
|
668 |
+
prompt_tokens["prompt_attention_mask"] = [1] + prompt_tokens["prompt_attention_mask"]
|
669 |
+
chosen_tokens["prompt_attention_mask"] = [1] + chosen_tokens["prompt_attention_mask"]
|
670 |
+
rejected_tokens["prompt_attention_mask"] = [1] + rejected_tokens["prompt_attention_mask"]
|
671 |
+
|
672 |
+
# print(chosen_tokens["input_ids"])
|
673 |
+
# print(chosen_tokens["attention_mask"])
|
674 |
+
# add EOS token to end of answer
|
675 |
+
chosen_tokens["input_ids"].append(self.tokenizer.eos_token_id)
|
676 |
+
# print(chosen_tokens["input_ids"])
|
677 |
+
chosen_tokens["attention_mask"].append(1)
|
678 |
+
# print(chosen_tokens["attention_mask"])
|
679 |
+
|
680 |
+
rejected_tokens["input_ids"].append(self.tokenizer.eos_token_id)
|
681 |
+
rejected_tokens["attention_mask"].append(1)
|
682 |
+
|
683 |
+
longer_response_length = max(len(chosen_tokens["input_ids"]), len(rejected_tokens["input_ids"]))
|
684 |
+
|
685 |
+
# if combined sequence is too long, truncate the prompt
|
686 |
+
for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]:
|
687 |
+
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length:
|
688 |
+
if self.truncation_mode == "keep_start":
|
689 |
+
for k in ["prompt_input_ids", "prompt_attention_mask"]:
|
690 |
+
answer_tokens[k] = answer_tokens[k][: self.max_prompt_length]
|
691 |
+
elif self.truncation_mode == "keep_end":
|
692 |
+
for k in ["prompt_input_ids", "prompt_attention_mask"]:
|
693 |
+
answer_tokens[k] = answer_tokens[k][-self.max_prompt_length :]
|
694 |
+
else:
|
695 |
+
raise ValueError(f"Unknown truncation mode: {self.truncation_mode}")
|
696 |
+
|
697 |
+
# if that's still too long, truncate the response
|
698 |
+
for answer_tokens in [chosen_tokens, rejected_tokens]:
|
699 |
+
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length:
|
700 |
+
for k in ["input_ids", "attention_mask"]:
|
701 |
+
answer_tokens[k] = answer_tokens[k][: self.max_length - self.max_prompt_length]
|
702 |
+
|
703 |
+
# Create labels
|
704 |
+
chosen_sequence_tokens = {
|
705 |
+
k: chosen_tokens[f"prompt_{k}"] + chosen_tokens[k] for k in ["input_ids", "attention_mask"]
|
706 |
+
}
|
707 |
+
rejected_sequence_tokens = {
|
708 |
+
k: rejected_tokens[f"prompt_{k}"] + rejected_tokens[k] for k in ["input_ids", "attention_mask"]
|
709 |
+
}
|
710 |
+
chosen_sequence_tokens["labels"] = chosen_sequence_tokens["input_ids"][:]
|
711 |
+
chosen_sequence_tokens["labels"][: len(chosen_tokens["prompt_input_ids"])] = [
|
712 |
+
self.label_pad_token_id
|
713 |
+
] * len(chosen_tokens["prompt_input_ids"])
|
714 |
+
rejected_sequence_tokens["labels"] = rejected_sequence_tokens["input_ids"][:]
|
715 |
+
rejected_sequence_tokens["labels"][: len(rejected_tokens["prompt_input_ids"])] = [
|
716 |
+
self.label_pad_token_id
|
717 |
+
] * len(rejected_tokens["prompt_input_ids"])
|
718 |
+
|
719 |
+
for k, toks in {
|
720 |
+
"chosen_": chosen_sequence_tokens,
|
721 |
+
"rejected_": rejected_sequence_tokens,
|
722 |
+
"": prompt_tokens,
|
723 |
+
}.items():
|
724 |
+
for type_key, tokens in toks.items():
|
725 |
+
if type_key == "token_type_ids":
|
726 |
+
continue
|
727 |
+
batch[f"{k}{type_key}"] = tokens
|
728 |
+
# print(f"{k}{type_key}", tokens)
|
729 |
+
# import pdb; pdb.set_trace()
|
730 |
+
# raise
|
731 |
+
|
732 |
+
else:
|
733 |
+
chosen_tokens = self.tokenizer(
|
734 |
+
chosen, truncation=True, max_length=self.max_target_length, add_special_tokens=True
|
735 |
+
)
|
736 |
+
rejected_tokens = self.tokenizer(
|
737 |
+
rejected, truncation=True, max_length=self.max_target_length, add_special_tokens=True
|
738 |
+
)
|
739 |
+
prompt_tokens = self.tokenizer(
|
740 |
+
prompt, truncation=True, max_length=self.max_prompt_length, add_special_tokens=True
|
741 |
+
)
|
742 |
+
|
743 |
+
batch["chosen_labels"] = chosen_tokens["input_ids"]
|
744 |
+
batch["rejected_labels"] = rejected_tokens["input_ids"]
|
745 |
+
batch["prompt_input_ids"] = prompt_tokens["input_ids"]
|
746 |
+
batch["prompt_attention_mask"] = prompt_tokens["attention_mask"]
|
747 |
+
|
748 |
+
if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"):
|
749 |
+
batch["rejected_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels(
|
750 |
+
labels=torch.tensor(batch["rejected_labels"])
|
751 |
+
)
|
752 |
+
batch["chosen_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels(
|
753 |
+
labels=torch.tensor(batch["chosen_labels"])
|
754 |
+
)
|
755 |
+
|
756 |
+
return batch
|
757 |
+
|
758 |
+
@contextmanager
|
759 |
+
def null_ref_context(self):
|
760 |
+
"""Context manager for handling null reference model (that is, peft adapter manipulation)."""
|
761 |
+
with self.accelerator.unwrap_model(
|
762 |
+
self.model
|
763 |
+
).disable_adapter() if self.is_peft_model and not self.ref_adapter_name else nullcontext():
|
764 |
+
if self.ref_adapter_name:
|
765 |
+
self.model.set_adapter(self.ref_adapter_name)
|
766 |
+
yield
|
767 |
+
if self.ref_adapter_name:
|
768 |
+
self.model.set_adapter(self.model_adapter_name or "default")
|
769 |
+
|
770 |
+
def compute_reference_log_probs(self, padded_batch: Dict) -> Dict:
|
771 |
+
"""Computes log probabilities of the reference model for a single padded batch of a DPO specific dataset."""
|
772 |
+
compte_ref_context_manager = torch.cuda.amp.autocast if self._peft_has_been_casted_to_bf16 else nullcontext
|
773 |
+
|
774 |
+
# compute reference logps
|
775 |
+
with torch.no_grad(), compte_ref_context_manager():
|
776 |
+
if self.ref_model is None:
|
777 |
+
with self.null_ref_context():
|
778 |
+
(
|
779 |
+
reference_chosen_logps,
|
780 |
+
reference_rejected_logps,
|
781 |
+
_,
|
782 |
+
_,
|
783 |
+
) = self.concatenated_forward(self.model, padded_batch)
|
784 |
+
else:
|
785 |
+
(
|
786 |
+
reference_chosen_logps,
|
787 |
+
reference_rejected_logps,
|
788 |
+
_,
|
789 |
+
_,
|
790 |
+
) = self.concatenated_forward(self.ref_model, padded_batch)
|
791 |
+
|
792 |
+
return reference_chosen_logps, reference_rejected_logps
|
793 |
+
|
794 |
+
@staticmethod
|
795 |
+
def concatenated_inputs(
|
796 |
+
batch: Dict[str, Union[List, torch.LongTensor]],
|
797 |
+
is_encoder_decoder: bool = False,
|
798 |
+
label_pad_token_id: int = -100,
|
799 |
+
padding_value: int = 0,
|
800 |
+
device: Optional[torch.device] = None,
|
801 |
+
) -> Dict[str, torch.LongTensor]:
|
802 |
+
"""Concatenate the chosen and rejected inputs into a single tensor.
|
803 |
+
|
804 |
+
Args:
|
805 |
+
batch: A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors of shape (batch_size, sequence_length).
|
806 |
+
is_encoder_decoder: Whether the model is an encoder-decoder model.
|
807 |
+
label_pad_token_id: The label pad token id.
|
808 |
+
padding_value: The padding value to use for the concatenated inputs_ids.
|
809 |
+
device: The device for the concatenated inputs.
|
810 |
+
|
811 |
+
Returns:
|
812 |
+
A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'.
|
813 |
+
"""
|
814 |
+
concatenated_batch = {}
|
815 |
+
|
816 |
+
if is_encoder_decoder:
|
817 |
+
max_length = max(batch["chosen_labels"].shape[1], batch["rejected_labels"].shape[1])
|
818 |
+
else:
|
819 |
+
max_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1])
|
820 |
+
|
821 |
+
for k in batch:
|
822 |
+
if k.startswith("chosen") and isinstance(batch[k], torch.Tensor):
|
823 |
+
if "labels" in k or is_encoder_decoder:
|
824 |
+
pad_value = label_pad_token_id
|
825 |
+
elif k.endswith("_input_ids"):
|
826 |
+
pad_value = padding_value
|
827 |
+
elif k.endswith("_attention_mask"):
|
828 |
+
pad_value = 0
|
829 |
+
concatenated_key = k.replace("chosen", "concatenated")
|
830 |
+
concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value)
|
831 |
+
for k in batch:
|
832 |
+
if k.startswith("rejected") and isinstance(batch[k], torch.Tensor):
|
833 |
+
if "labels" in k or is_encoder_decoder:
|
834 |
+
pad_value = label_pad_token_id
|
835 |
+
elif k.endswith("_input_ids"):
|
836 |
+
pad_value = padding_value
|
837 |
+
elif k.endswith("_attention_mask"):
|
838 |
+
pad_value = 0
|
839 |
+
concatenated_key = k.replace("rejected", "concatenated")
|
840 |
+
concatenated_batch[concatenated_key] = torch.cat(
|
841 |
+
(
|
842 |
+
concatenated_batch[concatenated_key],
|
843 |
+
pad_to_length(batch[k], max_length, pad_value=pad_value),
|
844 |
+
),
|
845 |
+
dim=0,
|
846 |
+
).to(device=device)
|
847 |
+
|
848 |
+
if is_encoder_decoder:
|
849 |
+
concatenated_batch["concatenated_input_ids"] = batch["prompt_input_ids"].repeat(2, 1).to(device=device)
|
850 |
+
concatenated_batch["concatenated_attention_mask"] = (
|
851 |
+
batch["prompt_attention_mask"].repeat(2, 1).to(device=device)
|
852 |
+
)
|
853 |
+
|
854 |
+
return concatenated_batch
|
855 |
+
|
856 |
+
def dpo_loss(
|
857 |
+
self,
|
858 |
+
policy_chosen_logps: torch.FloatTensor,
|
859 |
+
policy_rejected_logps: torch.FloatTensor,
|
860 |
+
reference_chosen_logps: torch.FloatTensor,
|
861 |
+
reference_rejected_logps: torch.FloatTensor,
|
862 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
863 |
+
"""Compute the DPO loss for a batch of policy and reference model log probabilities.
|
864 |
+
|
865 |
+
Args:
|
866 |
+
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
|
867 |
+
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)
|
868 |
+
reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,)
|
869 |
+
reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,)
|
870 |
+
|
871 |
+
Returns:
|
872 |
+
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
|
873 |
+
The losses tensor contains the DPO loss for each example in the batch.
|
874 |
+
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively.
|
875 |
+
"""
|
876 |
+
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
877 |
+
if self.reference_free:
|
878 |
+
ref_logratios = torch.tensor([0], dtype=pi_logratios.dtype, device=pi_logratios.device)
|
879 |
+
else:
|
880 |
+
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
881 |
+
|
882 |
+
pi_logratios = pi_logratios.to(self.accelerator.device)
|
883 |
+
ref_logratios = ref_logratios.to(self.accelerator.device)
|
884 |
+
logits = pi_logratios - ref_logratios
|
885 |
+
|
886 |
+
# The beta is a temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5.
|
887 |
+
# We ignore the reference model as beta -> 0. The label_smoothing parameter encodes our uncertainty about the labels and
|
888 |
+
# calculates a conservative DPO loss.
|
889 |
+
if self.loss_type == "sigmoid":
|
890 |
+
losses = (
|
891 |
+
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
|
892 |
+
- F.logsigmoid(-self.beta * logits) * self.label_smoothing
|
893 |
+
)
|
894 |
+
elif self.loss_type == "hinge":
|
895 |
+
losses = torch.relu(1 - self.beta * logits)
|
896 |
+
elif self.loss_type == "ipo":
|
897 |
+
# eqn (17) of the paper where beta is the regularization parameter for the IPO loss, denoted by tau in the paper.
|
898 |
+
losses = (logits - 1 / (2 * self.beta)) ** 2
|
899 |
+
elif self.loss_type == "kto_pair":
|
900 |
+
# eqn (7) of the HALOs paper
|
901 |
+
chosen_KL = (policy_chosen_logps - reference_chosen_logps).mean().clamp(min=0)
|
902 |
+
rejected_KL = (policy_rejected_logps - reference_rejected_logps).mean().clamp(min=0)
|
903 |
+
|
904 |
+
chosen_logratios = policy_chosen_logps - reference_chosen_logps
|
905 |
+
rejected_logratios = policy_rejected_logps - reference_rejected_logps
|
906 |
+
# As described in the KTO report, the KL term for chosen (rejected) is estimated using the rejected (chosen) half.
|
907 |
+
losses = torch.cat(
|
908 |
+
(
|
909 |
+
1 - F.sigmoid(self.beta * (chosen_logratios - rejected_KL)),
|
910 |
+
1 - F.sigmoid(self.beta * (chosen_KL - rejected_logratios)),
|
911 |
+
),
|
912 |
+
0,
|
913 |
+
)
|
914 |
+
else:
|
915 |
+
raise ValueError(
|
916 |
+
f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge', 'ipo', 'kto_pair']"
|
917 |
+
)
|
918 |
+
|
919 |
+
chosen_rewards = (
|
920 |
+
self.beta
|
921 |
+
* (
|
922 |
+
policy_chosen_logps.to(self.accelerator.device) - reference_chosen_logps.to(self.accelerator.device)
|
923 |
+
).detach()
|
924 |
+
)
|
925 |
+
rejected_rewards = (
|
926 |
+
self.beta
|
927 |
+
* (
|
928 |
+
policy_rejected_logps.to(self.accelerator.device)
|
929 |
+
- reference_rejected_logps.to(self.accelerator.device)
|
930 |
+
).detach()
|
931 |
+
)
|
932 |
+
|
933 |
+
return losses, chosen_rewards, rejected_rewards
|
934 |
+
|
935 |
+
@staticmethod
|
936 |
+
def get_batch_logps(
|
937 |
+
logits: torch.FloatTensor,
|
938 |
+
labels: torch.LongTensor,
|
939 |
+
average_log_prob: bool = False,
|
940 |
+
label_pad_token_id: int = -100,
|
941 |
+
is_encoder_decoder: bool = False,
|
942 |
+
) -> torch.FloatTensor:
|
943 |
+
"""Compute the log probabilities of the given labels under the given logits.
|
944 |
+
|
945 |
+
Args:
|
946 |
+
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
|
947 |
+
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length)
|
948 |
+
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
|
949 |
+
label_pad_token_id: The label pad token id.
|
950 |
+
is_encoder_decoder: Whether the model is an encoder-decoder model.
|
951 |
+
|
952 |
+
Returns:
|
953 |
+
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
|
954 |
+
"""
|
955 |
+
if logits.shape[:-1] != labels.shape:
|
956 |
+
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.")
|
957 |
+
|
958 |
+
if not is_encoder_decoder:
|
959 |
+
labels = labels[:, 1:].clone()
|
960 |
+
logits = logits[:, :-1, :]
|
961 |
+
loss_mask = labels != label_pad_token_id
|
962 |
+
|
963 |
+
# dummy token; we'll ignore the losses on these tokens later
|
964 |
+
labels[labels == label_pad_token_id] = 0
|
965 |
+
|
966 |
+
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
|
967 |
+
|
968 |
+
if average_log_prob:
|
969 |
+
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
970 |
+
else:
|
971 |
+
return (per_token_logps * loss_mask).sum(-1)
|
972 |
+
|
973 |
+
def concatenated_forward(
|
974 |
+
self, model: nn.Module, batch: Dict[str, Union[List, torch.LongTensor]]
|
975 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
976 |
+
"""Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.
|
977 |
+
|
978 |
+
We do this to avoid doing two forward passes, because it's faster for FSDP.
|
979 |
+
"""
|
980 |
+
concatenated_batch = self.concatenated_inputs(
|
981 |
+
batch,
|
982 |
+
is_encoder_decoder=self.is_encoder_decoder,
|
983 |
+
label_pad_token_id=self.label_pad_token_id,
|
984 |
+
padding_value=self.padding_value,
|
985 |
+
device=self.accelerator.device,
|
986 |
+
)
|
987 |
+
len_chosen = batch["chosen_labels"].shape[0]
|
988 |
+
|
989 |
+
model_kwargs = (
|
990 |
+
{
|
991 |
+
"labels": concatenated_batch["concatenated_labels"],
|
992 |
+
"decoder_input_ids": concatenated_batch.pop("concatenated_decoder_input_ids", None),
|
993 |
+
}
|
994 |
+
if self.is_encoder_decoder
|
995 |
+
else {}
|
996 |
+
)
|
997 |
+
all_logits = model(
|
998 |
+
concatenated_batch["concatenated_input_ids"],
|
999 |
+
attention_mask=concatenated_batch["concatenated_attention_mask"],
|
1000 |
+
use_cache=False,
|
1001 |
+
**model_kwargs,
|
1002 |
+
).logits
|
1003 |
+
|
1004 |
+
all_logps = self.get_batch_logps(
|
1005 |
+
all_logits,
|
1006 |
+
concatenated_batch["concatenated_labels"],
|
1007 |
+
average_log_prob=self.loss_type == "ipo",
|
1008 |
+
is_encoder_decoder=self.is_encoder_decoder,
|
1009 |
+
label_pad_token_id=self.label_pad_token_id,
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
chosen_logps = all_logps[:len_chosen]
|
1013 |
+
rejected_logps = all_logps[len_chosen:]
|
1014 |
+
|
1015 |
+
chosen_logits = all_logits[:len_chosen]
|
1016 |
+
rejected_logits = all_logits[len_chosen:]
|
1017 |
+
|
1018 |
+
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits)
|
1019 |
+
|
1020 |
+
def get_batch_loss_metrics(
|
1021 |
+
self,
|
1022 |
+
model,
|
1023 |
+
batch: Dict[str, Union[List, torch.LongTensor]],
|
1024 |
+
train_eval: Literal["train", "eval"] = "train",
|
1025 |
+
):
|
1026 |
+
"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
|
1027 |
+
metrics = {}
|
1028 |
+
|
1029 |
+
(
|
1030 |
+
policy_chosen_logps,
|
1031 |
+
policy_rejected_logps,
|
1032 |
+
policy_chosen_logits,
|
1033 |
+
policy_rejected_logits,
|
1034 |
+
) = self.concatenated_forward(model, batch)
|
1035 |
+
|
1036 |
+
# if reference_chosen_logps and reference_rejected_logps in batch use them, otherwise use the reference model
|
1037 |
+
if "reference_chosen_logps" in batch and "reference_rejected_logps" in batch:
|
1038 |
+
reference_chosen_logps = batch["reference_chosen_logps"]
|
1039 |
+
reference_rejected_logps = batch["reference_rejected_logps"]
|
1040 |
+
else:
|
1041 |
+
with torch.no_grad():
|
1042 |
+
if self.ref_model is None:
|
1043 |
+
with self.null_ref_context():
|
1044 |
+
(
|
1045 |
+
reference_chosen_logps,
|
1046 |
+
reference_rejected_logps,
|
1047 |
+
_,
|
1048 |
+
_,
|
1049 |
+
) = self.concatenated_forward(self.model, batch)
|
1050 |
+
else:
|
1051 |
+
(
|
1052 |
+
reference_chosen_logps,
|
1053 |
+
reference_rejected_logps,
|
1054 |
+
_,
|
1055 |
+
_,
|
1056 |
+
) = self.concatenated_forward(self.ref_model, batch)
|
1057 |
+
|
1058 |
+
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
1059 |
+
policy_chosen_logps,
|
1060 |
+
policy_rejected_logps,
|
1061 |
+
reference_chosen_logps,
|
1062 |
+
reference_rejected_logps,
|
1063 |
+
)
|
1064 |
+
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
1065 |
+
|
1066 |
+
prefix = "eval_" if train_eval == "eval" else ""
|
1067 |
+
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().cpu()
|
1068 |
+
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.mean().cpu()
|
1069 |
+
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.mean().cpu()
|
1070 |
+
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).mean().cpu()
|
1071 |
+
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().mean().cpu()
|
1072 |
+
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().mean().cpu()
|
1073 |
+
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().mean().cpu()
|
1074 |
+
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().mean().cpu()
|
1075 |
+
|
1076 |
+
return losses.mean(), metrics
|
1077 |
+
|
1078 |
+
def compute_loss(
|
1079 |
+
self,
|
1080 |
+
model: Union[PreTrainedModel, nn.Module],
|
1081 |
+
inputs: Dict[str, Union[torch.Tensor, Any]],
|
1082 |
+
return_outputs=False,
|
1083 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, Dict[str, torch.Tensor]]]:
|
1084 |
+
if not self.use_dpo_data_collator:
|
1085 |
+
warnings.warn(
|
1086 |
+
"compute_loss is only implemented for DPODataCollatorWithPadding, and you passed a datacollator that is different than "
|
1087 |
+
"DPODataCollatorWithPadding - you might see unexpected behavior. Alternatively, you can implement your own prediction_step method if you are using a custom data collator"
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
compute_loss_context_manager = torch.cuda.amp.autocast if self._peft_has_been_casted_to_bf16 else nullcontext
|
1091 |
+
|
1092 |
+
with compute_loss_context_manager():
|
1093 |
+
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train")
|
1094 |
+
|
1095 |
+
# Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class:
|
1096 |
+
loss = loss.to(self.args.device)
|
1097 |
+
# force log the metrics
|
1098 |
+
self.store_metrics(metrics, train_eval="train")
|
1099 |
+
|
1100 |
+
if return_outputs:
|
1101 |
+
return (loss, metrics)
|
1102 |
+
return loss
|
1103 |
+
|
1104 |
+
def get_batch_samples(self, model, batch: Dict[str, torch.LongTensor]) -> Tuple[str, str]:
|
1105 |
+
"""Generate samples from the model and reference model for the given batch of inputs."""
|
1106 |
+
|
1107 |
+
# If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with
|
1108 |
+
# the torch cuda amp context manager as some hidden states are silently casted to full precision.
|
1109 |
+
generate_context_manager = nullcontext if not self._peft_has_been_casted_to_bf16 else torch.cuda.amp.autocast
|
1110 |
+
|
1111 |
+
with generate_context_manager():
|
1112 |
+
policy_output = model.generate(
|
1113 |
+
input_ids=batch["prompt_input_ids"],
|
1114 |
+
attention_mask=batch["prompt_attention_mask"],
|
1115 |
+
max_length=self.max_length,
|
1116 |
+
do_sample=True,
|
1117 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
1118 |
+
)
|
1119 |
+
|
1120 |
+
# if reference_output in batch use that otherwise use the reference model
|
1121 |
+
if "reference_output" in batch:
|
1122 |
+
reference_output = batch["reference_output"]
|
1123 |
+
else:
|
1124 |
+
if self.ref_model is None:
|
1125 |
+
with self.null_ref_context():
|
1126 |
+
reference_output = self.model.generate(
|
1127 |
+
input_ids=batch["prompt_input_ids"],
|
1128 |
+
attention_mask=batch["prompt_attention_mask"],
|
1129 |
+
max_length=self.max_length,
|
1130 |
+
do_sample=True,
|
1131 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
1132 |
+
)
|
1133 |
+
else:
|
1134 |
+
reference_output = self.ref_model.generate(
|
1135 |
+
input_ids=batch["prompt_input_ids"],
|
1136 |
+
attention_mask=batch["prompt_attention_mask"],
|
1137 |
+
max_length=self.max_length,
|
1138 |
+
do_sample=True,
|
1139 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
policy_output = pad_to_length(policy_output, self.max_length, self.tokenizer.pad_token_id)
|
1143 |
+
policy_output_decoded = self.tokenizer.batch_decode(policy_output, skip_special_tokens=True)
|
1144 |
+
|
1145 |
+
reference_output = pad_to_length(reference_output, self.max_length, self.tokenizer.pad_token_id)
|
1146 |
+
reference_output_decoded = self.tokenizer.batch_decode(reference_output, skip_special_tokens=True)
|
1147 |
+
|
1148 |
+
return policy_output_decoded, reference_output_decoded
|
1149 |
+
|
1150 |
+
def prediction_step(
|
1151 |
+
self,
|
1152 |
+
model: Union[PreTrainedModel, nn.Module],
|
1153 |
+
inputs: Dict[str, Union[torch.Tensor, Any]],
|
1154 |
+
prediction_loss_only: bool,
|
1155 |
+
ignore_keys: Optional[List[str]] = None,
|
1156 |
+
):
|
1157 |
+
if not self.use_dpo_data_collator:
|
1158 |
+
warnings.warn(
|
1159 |
+
"prediction_step is only implemented for DPODataCollatorWithPadding, and you passed a datacollator that is different than "
|
1160 |
+
"DPODataCollatorWithPadding - you might see unexpected behavior. Alternatively, you can implement your own prediction_step method if you are using a custom data collator"
|
1161 |
+
)
|
1162 |
+
if ignore_keys is None:
|
1163 |
+
if hasattr(model, "config"):
|
1164 |
+
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", [])
|
1165 |
+
else:
|
1166 |
+
ignore_keys = []
|
1167 |
+
|
1168 |
+
prediction_context_manager = torch.cuda.amp.autocast if self._peft_has_been_casted_to_bf16 else nullcontext
|
1169 |
+
|
1170 |
+
with torch.no_grad(), prediction_context_manager():
|
1171 |
+
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval")
|
1172 |
+
|
1173 |
+
# force log the metrics
|
1174 |
+
self.store_metrics(metrics, train_eval="eval")
|
1175 |
+
|
1176 |
+
if prediction_loss_only:
|
1177 |
+
return (loss.detach(), None, None)
|
1178 |
+
|
1179 |
+
# logits for the chosen and rejected samples from model
|
1180 |
+
logits_dict = {
|
1181 |
+
"eval_logits/chosen": metrics["eval_logits/chosen"],
|
1182 |
+
"eval_logits/rejected": metrics["eval_logits/rejected"],
|
1183 |
+
}
|
1184 |
+
logits = tuple(v.unsqueeze(dim=0) for k, v in logits_dict.items() if k not in ignore_keys)
|
1185 |
+
logits = torch.stack(logits).mean(axis=1).to(self.accelerator.device)
|
1186 |
+
labels = torch.zeros(logits.shape[0], device=self.accelerator.device)
|
1187 |
+
|
1188 |
+
return (loss.detach(), logits, labels)
|
1189 |
+
|
1190 |
+
def store_metrics(self, metrics: Dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None:
|
1191 |
+
for key, value in metrics.items():
|
1192 |
+
self._stored_metrics[train_eval][key].append(value)
|
1193 |
+
|
1194 |
+
def evaluation_loop(
|
1195 |
+
self,
|
1196 |
+
dataloader: DataLoader,
|
1197 |
+
description: str,
|
1198 |
+
prediction_loss_only: Optional[bool] = None,
|
1199 |
+
ignore_keys: Optional[List[str]] = None,
|
1200 |
+
metric_key_prefix: str = "eval",
|
1201 |
+
) -> EvalLoopOutput:
|
1202 |
+
"""
|
1203 |
+
Overriding built-in evaluation loop to store metrics for each batch.
|
1204 |
+
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
|
1205 |
+
|
1206 |
+
Works both with or without labels.
|
1207 |
+
"""
|
1208 |
+
|
1209 |
+
# Sample and save to game log if requested (for one batch to save time)
|
1210 |
+
if self.generate_during_eval:
|
1211 |
+
# Generate random indices within the range of the total number of samples
|
1212 |
+
num_samples = len(dataloader.dataset)
|
1213 |
+
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size)
|
1214 |
+
|
1215 |
+
# Use dataloader.dataset.select to get the random batch without iterating over the DataLoader
|
1216 |
+
random_batch_dataset = dataloader.dataset.select(random_indices)
|
1217 |
+
random_batch = self.data_collator(random_batch_dataset)
|
1218 |
+
random_batch = self._prepare_inputs(random_batch)
|
1219 |
+
|
1220 |
+
policy_output_decoded, ref_output_decoded = self.get_batch_samples(self.model, random_batch)
|
1221 |
+
|
1222 |
+
self.log(
|
1223 |
+
{
|
1224 |
+
"game_log": wandb.Table(
|
1225 |
+
columns=["Prompt", "Policy", "Ref Model"],
|
1226 |
+
rows=[
|
1227 |
+
[prompt, pol[len(prompt) :], ref[len(prompt) :]]
|
1228 |
+
for prompt, pol, ref in zip(
|
1229 |
+
random_batch["prompt"], policy_output_decoded, ref_output_decoded
|
1230 |
+
)
|
1231 |
+
],
|
1232 |
+
)
|
1233 |
+
}
|
1234 |
+
)
|
1235 |
+
self.state.log_history.pop()
|
1236 |
+
|
1237 |
+
# Base evaluation
|
1238 |
+
initial_output = super().evaluation_loop(
|
1239 |
+
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
return initial_output
|
1243 |
+
|
1244 |
+
def log(self, logs: Dict[str, float]) -> None:
|
1245 |
+
"""
|
1246 |
+
Log `logs` on the various objects watching training, including stored metrics.
|
1247 |
+
|
1248 |
+
Args:
|
1249 |
+
logs (`Dict[str, float]`):
|
1250 |
+
The values to log.
|
1251 |
+
"""
|
1252 |
+
# logs either has 'loss' or 'eval_loss'
|
1253 |
+
train_eval = "train" if "loss" in logs else "eval"
|
1254 |
+
# Add averaged stored metrics to logs
|
1255 |
+
for key, metrics in self._stored_metrics[train_eval].items():
|
1256 |
+
logs[key] = torch.tensor(metrics).mean().item()
|
1257 |
+
del self._stored_metrics[train_eval]
|
1258 |
+
return super().log(logs)
|
1259 |
+
|
1260 |
+
@wraps(Trainer.push_to_hub)
|
1261 |
+
def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str:
|
1262 |
+
"""
|
1263 |
+
Overwrite the `push_to_hub` method in order to force-add the tag "dpo" when pushing the
|
1264 |
+
model on the Hub. Please refer to `~transformers.Trainer.push_to_hub` for more details.
|
1265 |
+
"""
|
1266 |
+
kwargs = trl_sanitze_kwargs_for_tagging(model=self.model, tag_names=self._tag_names, kwargs=kwargs)
|
1267 |
+
|
1268 |
+
return super().push_to_hub(commit_message=commit_message, blocking=blocking, **kwargs)
|
prepare_sft_data.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# (Modifications Copyright(C) [2024] Advanced Micro Devices, Inc. All rights reserved)
|
2 |
+
"""
|
3 |
+
Script for preparing the SFT data for fine-tuning AMD-OLMo model.
|
4 |
+
Modifed from https://github.com/allenai/OLMo/blob/main/scripts/prepare_tulu_data.py
|
5 |
+
"""
|
6 |
+
|
7 |
+
import logging
|
8 |
+
from argparse import ArgumentParser
|
9 |
+
from functools import partial
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import datasets as ds
|
13 |
+
import numpy as np
|
14 |
+
from rich.progress import track
|
15 |
+
|
16 |
+
from olmo.tokenizer import Tokenizer
|
17 |
+
from olmo.util import prepare_cli_environment
|
18 |
+
import random
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
log = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
def convert_code_feedback_to_tulu_format(dataset, mix=False):
|
25 |
+
log.info("Converting code_feedback ...")
|
26 |
+
y_all = []
|
27 |
+
for i, sample in enumerate(dataset):
|
28 |
+
y = {
|
29 |
+
"dataset": "code_feedback",
|
30 |
+
"id": "code_feedback_{}".format(i),
|
31 |
+
"messages": sample['messages']
|
32 |
+
}
|
33 |
+
y_all.append(y)
|
34 |
+
|
35 |
+
log.info(f"In total {len(y_all)} samples")
|
36 |
+
if mix:
|
37 |
+
return y_all
|
38 |
+
else:
|
39 |
+
new_dataset = ds.Dataset.from_list(y_all)
|
40 |
+
return new_dataset
|
41 |
+
|
42 |
+
|
43 |
+
def convert_OpenHermes_to_tulu_format(dataset, mix=False):
|
44 |
+
log.info("Converting OpenHermes ...")
|
45 |
+
role_map = {"human": "user", "gpt": "assistant", "system": "system"}
|
46 |
+
y_all = []
|
47 |
+
for i, sample in enumerate(dataset):
|
48 |
+
y = {
|
49 |
+
"dataset": "OpenHermes",
|
50 |
+
"id": "OpenHermes_{}".format(i),
|
51 |
+
"messages": [{"role": role_map[mssg["from"]], "content": mssg["value"]} for mssg in sample['conversations']]
|
52 |
+
}
|
53 |
+
y_all.append(y)
|
54 |
+
|
55 |
+
log.info(f"In total {len(y_all)} samples")
|
56 |
+
if mix:
|
57 |
+
return y_all
|
58 |
+
else:
|
59 |
+
new_dataset = ds.Dataset.from_list(y_all)
|
60 |
+
return new_dataset
|
61 |
+
|
62 |
+
|
63 |
+
def convert_WebInstructSub_to_tulu_format(dataset, mix=False):
|
64 |
+
log.info("Converting WebInstructSub ...")
|
65 |
+
y_all = []
|
66 |
+
for i, sample in tqdm(enumerate(dataset)):
|
67 |
+
y = {
|
68 |
+
"dataset": "WebInstructSub",
|
69 |
+
"id": "WebInstructSub_{}".format(i),
|
70 |
+
"messages": [{"role": "user", "content": sample["question"]}, {"role": "assistant", "content": sample["answer"]}]
|
71 |
+
}
|
72 |
+
y_all.append(y)
|
73 |
+
|
74 |
+
log.info(f"In total {len(y_all)} samples")
|
75 |
+
if mix:
|
76 |
+
return y_all
|
77 |
+
else:
|
78 |
+
new_dataset = ds.Dataset.from_list(y_all)
|
79 |
+
return new_dataset
|
80 |
+
|
81 |
+
|
82 |
+
def main(opts) -> None:
|
83 |
+
tokenizer: Tokenizer
|
84 |
+
if Path(opts.tokenizer).is_file():
|
85 |
+
tokenizer = Tokenizer.from_file(opts.tokenizer, eos_token_id=opts.eos, pad_token_id=opts.pad)
|
86 |
+
else:
|
87 |
+
tokenizer = Tokenizer.from_pretrained(opts.tokenizer, eos_token_id=opts.eos, pad_token_id=opts.pad)
|
88 |
+
|
89 |
+
if opts.dataset == "tulu":
|
90 |
+
dataset = ds.load_dataset("allenai/tulu-v2-sft-mixture", split="train")
|
91 |
+
elif opts.dataset == "2nd-phase":
|
92 |
+
datasets = ["code-feedback", "OpenHermes", "WebInstructSub"]
|
93 |
+
combined_datasets = []
|
94 |
+
for dataset_name in datasets:
|
95 |
+
if dataset_name == "code-feedback":
|
96 |
+
dataset = ds.load_dataset("m-a-p/Code-Feedback", split="train")
|
97 |
+
dataset = convert_code_feedback_to_tulu_format(dataset, mix=True)
|
98 |
+
elif dataset_name == "OpenHermes":
|
99 |
+
dataset = ds.load_dataset("teknium/OpenHermes-2.5", split="train")
|
100 |
+
dataset = convert_OpenHermes_to_tulu_format(dataset, mix=True)
|
101 |
+
elif dataset_name == "WebInstructSub":
|
102 |
+
dataset = ds.load_dataset("TIGER-Lab/WebInstructSub", split="train")
|
103 |
+
dataset = convert_WebInstructSub_to_tulu_format(dataset, mix=True)
|
104 |
+
|
105 |
+
combined_datasets += dataset
|
106 |
+
|
107 |
+
random.seed(42)
|
108 |
+
random.shuffle(combined_datasets)
|
109 |
+
log.info(f"In total {len(combined_datasets)} samples")
|
110 |
+
dataset = ds.Dataset.from_list(combined_datasets)
|
111 |
+
|
112 |
+
log.info("Tokenizing dataset...")
|
113 |
+
dataset = dataset.map(
|
114 |
+
partial(preprocess, tokenizer=tokenizer, max_seq_len=opts.seq_len),
|
115 |
+
batched=False,
|
116 |
+
remove_columns=["dataset", "id", "messages"],
|
117 |
+
num_proc=opts.num_proc, # type: ignore
|
118 |
+
)
|
119 |
+
|
120 |
+
log.info("Filtering dataset...")
|
121 |
+
n = len(dataset) # type: ignore
|
122 |
+
dataset = dataset.filter(filter, batched=False, num_proc=opts.num_proc) # type: ignore
|
123 |
+
log.info(f"Filtered out {n - len(dataset):,d} examples")
|
124 |
+
|
125 |
+
log.info("Counting tokens...")
|
126 |
+
total_tokens = 0
|
127 |
+
for ex in track(dataset):
|
128 |
+
assert len(ex["input_ids"]) == opts.seq_len # type: ignore
|
129 |
+
total_tokens += len(ex["input_ids"]) # type: ignore
|
130 |
+
log.info(f"Total tokens: {total_tokens:,d}")
|
131 |
+
|
132 |
+
log.info(f"Saving results to '{opts.output_dir}'...")
|
133 |
+
output_dir = Path(opts.output_dir)
|
134 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
135 |
+
|
136 |
+
input_ids_file = np.memmap(
|
137 |
+
str(output_dir / "input_ids.npy"), dtype=np.uint16, mode="w+", shape=(total_tokens,)
|
138 |
+
)
|
139 |
+
label_mask_file = np.memmap(
|
140 |
+
str(output_dir / "label_mask.npy"), dtype=np.bool_, mode="w+", shape=(total_tokens,)
|
141 |
+
)
|
142 |
+
offset = 0
|
143 |
+
for ex in track(dataset):
|
144 |
+
ex_len = len(ex["input_ids"]) # type: ignore
|
145 |
+
input_ids_file[offset : offset + ex_len] = ex["input_ids"] # type: ignore
|
146 |
+
label_mask_file[offset : offset + ex_len] = ex["label_mask"] # type: ignore
|
147 |
+
offset += ex_len
|
148 |
+
input_ids_file.flush()
|
149 |
+
label_mask_file.flush()
|
150 |
+
|
151 |
+
log.info("Done!")
|
152 |
+
|
153 |
+
|
154 |
+
def filter(example):
|
155 |
+
return example["n_labels"] > 0
|
156 |
+
|
157 |
+
|
158 |
+
def preprocess(example, tokenizer: Tokenizer, max_seq_len: int):
|
159 |
+
input_ids = [tokenizer.eos_token_id]
|
160 |
+
label_mask = [False]
|
161 |
+
|
162 |
+
for msg in example["messages"]:
|
163 |
+
role_tokens = tokenizer.encode(f"<|{msg['role']}|>\n", add_special_tokens=False)
|
164 |
+
label_mask += [False] * len(role_tokens)
|
165 |
+
input_ids += role_tokens
|
166 |
+
|
167 |
+
if msg["role"] == "assistant":
|
168 |
+
content_tokens = tokenizer.encode(
|
169 |
+
msg["content"].strip() + tokenizer.eos_token + "\n", add_special_tokens=False
|
170 |
+
)
|
171 |
+
label_mask += [True] * len(content_tokens)
|
172 |
+
# mask out the last '\n'
|
173 |
+
assert content_tokens[-2] == tokenizer.eos_token_id
|
174 |
+
label_mask[-1] = False
|
175 |
+
else:
|
176 |
+
content_tokens = tokenizer.encode(msg["content"].strip() + "\n", add_special_tokens=False)
|
177 |
+
label_mask += [False] * len(content_tokens)
|
178 |
+
input_ids += content_tokens
|
179 |
+
|
180 |
+
input_ids = input_ids[:max_seq_len]
|
181 |
+
label_mask = label_mask[:max_seq_len]
|
182 |
+
|
183 |
+
if len(input_ids) < max_seq_len:
|
184 |
+
pad_len = max_seq_len - len(input_ids)
|
185 |
+
input_ids += [tokenizer.pad_token_id] * pad_len
|
186 |
+
label_mask += [False] * pad_len
|
187 |
+
|
188 |
+
assert len(input_ids) == len(label_mask)
|
189 |
+
n_labels = sum(label_mask)
|
190 |
+
|
191 |
+
return {"input_ids": input_ids, "label_mask": label_mask, "n_labels": n_labels}
|
192 |
+
|
193 |
+
|
194 |
+
def get_parser() -> ArgumentParser:
|
195 |
+
parser = ArgumentParser(description="Prepare Math dataset")
|
196 |
+
parser.add_argument("--output_dir", type=str, help="""Directory to save the results to.""")
|
197 |
+
parser.add_argument(
|
198 |
+
"-t",
|
199 |
+
"--tokenizer",
|
200 |
+
type=str,
|
201 |
+
help="""Tokenizer path or identifier.""",
|
202 |
+
default=Path(__file__).parent / "tokenizers" / "allenai_eleuther-ai-gpt-neox-20b-pii-special.json",
|
203 |
+
)
|
204 |
+
parser.add_argument("-ds", "--dataset", type=str, help="""Dataset that we are processing. tulu or 2nd-phase""", default="tulu")
|
205 |
+
parser.add_argument("-s", "--seq-len", type=int, help="""Max sequence length.""", default=2048)
|
206 |
+
parser.add_argument("--eos", type=int, help="""EOS token ID.""", default=50279)
|
207 |
+
parser.add_argument("--pad", type=int, help="""PAD token ID.""", default=1)
|
208 |
+
parser.add_argument("-j", "--num-proc", type=int, help="""Number of workers.""", default=8)
|
209 |
+
return parser
|
210 |
+
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
prepare_cli_environment()
|
214 |
+
opts = get_parser().parse_args()
|
215 |
+
main(opts)
|