# pytest: disable # Model arguments model_name_or_path: AMD-OLMo-1B-dpo torch_dtype: null use_flash_attention_2: false chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: csarron/argilla-ultrafeedback-binarized-preferences-cleaned: 1.0 dataset_splits: - train - test preprocessing_num_workers: 16 # DPOTrainer arguments bf16: true beta: 0.01 do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: AMD-OLMo-1B-dpo learning_rate: 5.0e-5 log_level: info logging_steps: 10 lr_scheduler_type: cosine max_length: 1024 max_prompt_length: 512 num_train_epochs: 3 optim: adamw_torch output_dir: data/AMD-OLMo-1B-dpo per_device_train_batch_size: 8 per_device_eval_batch_size: 8 push_to_hub: false save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1