Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- model_index.json +25 -0
- pipeline.py +749 -0
- scheduler/scheduler_config.json +17 -0
- text_encoder/config.json +36 -0
- text_encoder/generation_config.json +9 -0
- tokenizer/special_tokens_map.json +17 -0
- tokenizer/tokenizer.json +3 -0
- tokenizer/tokenizer_config.json +2062 -0
- transformer/config.json +29 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- transformer/transformer.py +435 -0
- vae/config.json +89 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
model_index.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "EspressoDiTPipeline",
|
3 |
+
"_diffusers_version": "0.33.1",
|
4 |
+
"_name_or_path": "amd/Espresso-0.6B",
|
5 |
+
"scheduler": [
|
6 |
+
"diffusers",
|
7 |
+
"FlowMatchEulerDiscreteScheduler"
|
8 |
+
],
|
9 |
+
"text_encoder": [
|
10 |
+
"transformers",
|
11 |
+
"LlamaForCausalLM"
|
12 |
+
],
|
13 |
+
"tokenizer": [
|
14 |
+
"transformers",
|
15 |
+
"PreTrainedTokenizerFast"
|
16 |
+
],
|
17 |
+
"transformer": [
|
18 |
+
"transformer",
|
19 |
+
"EspressoDiTModel"
|
20 |
+
],
|
21 |
+
"vae": [
|
22 |
+
"diffusers",
|
23 |
+
"AutoencoderDC"
|
24 |
+
]
|
25 |
+
}
|
pipeline.py
ADDED
@@ -0,0 +1,749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modifications Copyright (c) 2025 Advanced Micro Devices, Inc. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import html
|
17 |
+
import inspect
|
18 |
+
import re
|
19 |
+
import urllib.parse as ul
|
20 |
+
from typing import Callable, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from diffusers.image_processor import PixArtImageProcessor
|
24 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
25 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
|
26 |
+
retrieve_timesteps,
|
27 |
+
)
|
28 |
+
from diffusers.utils import (
|
29 |
+
BACKENDS_MAPPING,
|
30 |
+
deprecate,
|
31 |
+
is_bs4_available,
|
32 |
+
is_ftfy_available,
|
33 |
+
logging,
|
34 |
+
)
|
35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
if is_bs4_available():
|
40 |
+
from bs4 import BeautifulSoup
|
41 |
+
|
42 |
+
if is_ftfy_available():
|
43 |
+
import ftfy
|
44 |
+
|
45 |
+
|
46 |
+
# Modified from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
|
47 |
+
class EspressoDiTPipeline(DiffusionPipeline):
|
48 |
+
|
49 |
+
bad_punct_regex = re.compile(
|
50 |
+
r"["
|
51 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
52 |
+
+ r"\)"
|
53 |
+
+ r"\("
|
54 |
+
+ r"\]"
|
55 |
+
+ r"\["
|
56 |
+
+ r"\}"
|
57 |
+
+ r"\{"
|
58 |
+
+ r"\|"
|
59 |
+
+ "\\"
|
60 |
+
+ r"\/"
|
61 |
+
+ r"\*"
|
62 |
+
+ r"]{1,}"
|
63 |
+
) # noqa
|
64 |
+
|
65 |
+
_optional_components = ["tokenizer", "text_encoder"]
|
66 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
tokenizer,
|
71 |
+
text_encoder,
|
72 |
+
vae,
|
73 |
+
transformer,
|
74 |
+
scheduler,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
|
78 |
+
self.register_modules(
|
79 |
+
tokenizer=tokenizer,
|
80 |
+
text_encoder=text_encoder,
|
81 |
+
vae=vae,
|
82 |
+
transformer=transformer,
|
83 |
+
scheduler=scheduler,
|
84 |
+
)
|
85 |
+
|
86 |
+
self.vae_scale_factor = 32 # TODO
|
87 |
+
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
88 |
+
|
89 |
+
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
90 |
+
def encode_prompt(
|
91 |
+
self,
|
92 |
+
prompt: Union[str, List[str]],
|
93 |
+
do_classifier_free_guidance: bool = True,
|
94 |
+
negative_prompt: str = "",
|
95 |
+
num_images_per_prompt: int = 1,
|
96 |
+
device: Optional[torch.device] = None,
|
97 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
98 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
99 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
100 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
101 |
+
clean_caption: bool = False,
|
102 |
+
max_sequence_length: int = 256,
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
r"""
|
106 |
+
Encodes the prompt into text encoder hidden states.
|
107 |
+
Args:
|
108 |
+
prompt (`str` or `List[str]`, *optional*):
|
109 |
+
prompt to be encoded
|
110 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
111 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
112 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
113 |
+
PixArt-Alpha, this should be "".
|
114 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
115 |
+
whether to use classifier free guidance or not
|
116 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
117 |
+
number of images that should be generated per prompt
|
118 |
+
device: (`torch.device`, *optional*):
|
119 |
+
torch device to place the resulting embeddings on
|
120 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
121 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
122 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
123 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
124 |
+
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
125 |
+
string.
|
126 |
+
clean_caption (`bool`, defaults to `False`):
|
127 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
128 |
+
max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
|
129 |
+
"""
|
130 |
+
|
131 |
+
if "mask_feature" in kwargs:
|
132 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
133 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
134 |
+
|
135 |
+
if device is None:
|
136 |
+
device = self._execution_device
|
137 |
+
|
138 |
+
if prompt is not None and isinstance(prompt, str):
|
139 |
+
batch_size = 1
|
140 |
+
elif prompt is not None and isinstance(prompt, list):
|
141 |
+
batch_size = len(prompt)
|
142 |
+
else:
|
143 |
+
batch_size = prompt_embeds.shape[0]
|
144 |
+
|
145 |
+
# See Section 3.1. of the paper.
|
146 |
+
max_length = max_sequence_length
|
147 |
+
|
148 |
+
if prompt_embeds is None:
|
149 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
150 |
+
text_inputs = self.tokenizer(
|
151 |
+
prompt,
|
152 |
+
padding="max_length",
|
153 |
+
max_length=max_length,
|
154 |
+
truncation=True,
|
155 |
+
add_special_tokens=True,
|
156 |
+
return_tensors="pt",
|
157 |
+
)
|
158 |
+
text_input_ids = text_inputs.input_ids
|
159 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
160 |
+
|
161 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
162 |
+
text_input_ids, untruncated_ids
|
163 |
+
):
|
164 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
165 |
+
logger.warning(
|
166 |
+
"The following part of your input was truncated because T5 can only handle sequences up to"
|
167 |
+
f" {max_length} tokens: {removed_text}"
|
168 |
+
)
|
169 |
+
|
170 |
+
prompt_attention_mask = text_inputs.attention_mask
|
171 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
172 |
+
|
173 |
+
prompt_embeds = self.text_encoder(
|
174 |
+
text_input_ids.to(device),
|
175 |
+
attention_mask=prompt_attention_mask,
|
176 |
+
output_hidden_states=True,
|
177 |
+
)["hidden_states"][-1]
|
178 |
+
|
179 |
+
if self.text_encoder is not None:
|
180 |
+
dtype = self.text_encoder.dtype
|
181 |
+
elif self.transformer is not None:
|
182 |
+
dtype = self.transformer.dtype
|
183 |
+
else:
|
184 |
+
dtype = None
|
185 |
+
|
186 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
187 |
+
|
188 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
189 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
190 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
191 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
192 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
193 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
194 |
+
|
195 |
+
# get unconditional embeddings for classifier free guidance
|
196 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
197 |
+
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
198 |
+
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
199 |
+
max_length = prompt_embeds.shape[1]
|
200 |
+
uncond_input = self.tokenizer(
|
201 |
+
uncond_tokens,
|
202 |
+
padding="max_length",
|
203 |
+
max_length=max_length,
|
204 |
+
truncation=True,
|
205 |
+
return_attention_mask=True,
|
206 |
+
add_special_tokens=True,
|
207 |
+
return_tensors="pt",
|
208 |
+
)
|
209 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
210 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
211 |
+
|
212 |
+
negative_prompt_embeds = self.text_encoder(
|
213 |
+
uncond_input.input_ids.to(device),
|
214 |
+
attention_mask=negative_prompt_attention_mask,
|
215 |
+
output_hidden_states=True,
|
216 |
+
)["hidden_states"][-1]
|
217 |
+
|
218 |
+
if do_classifier_free_guidance:
|
219 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
220 |
+
seq_len = negative_prompt_embeds.shape[1]
|
221 |
+
|
222 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
223 |
+
|
224 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
225 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
226 |
+
|
227 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
228 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
229 |
+
else:
|
230 |
+
negative_prompt_embeds = None
|
231 |
+
negative_prompt_attention_mask = None
|
232 |
+
|
233 |
+
return (
|
234 |
+
prompt_embeds,
|
235 |
+
prompt_attention_mask,
|
236 |
+
negative_prompt_embeds,
|
237 |
+
negative_prompt_attention_mask,
|
238 |
+
)
|
239 |
+
|
240 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
241 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
242 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
243 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
244 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
245 |
+
# and should be between [0, 1]
|
246 |
+
|
247 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
248 |
+
extra_step_kwargs = {}
|
249 |
+
if accepts_eta:
|
250 |
+
extra_step_kwargs["eta"] = eta
|
251 |
+
|
252 |
+
# check if the scheduler accepts generator
|
253 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
254 |
+
if accepts_generator:
|
255 |
+
extra_step_kwargs["generator"] = generator
|
256 |
+
return extra_step_kwargs
|
257 |
+
|
258 |
+
def check_inputs(
|
259 |
+
self,
|
260 |
+
prompt,
|
261 |
+
height,
|
262 |
+
width,
|
263 |
+
negative_prompt,
|
264 |
+
callback_steps,
|
265 |
+
prompt_embeds=None,
|
266 |
+
negative_prompt_embeds=None,
|
267 |
+
prompt_attention_mask=None,
|
268 |
+
negative_prompt_attention_mask=None,
|
269 |
+
):
|
270 |
+
if height % 8 != 0 or width % 8 != 0:
|
271 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
272 |
+
|
273 |
+
if (callback_steps is None) or (
|
274 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
275 |
+
):
|
276 |
+
raise ValueError(
|
277 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
278 |
+
f" {type(callback_steps)}."
|
279 |
+
)
|
280 |
+
|
281 |
+
if prompt is not None and prompt_embeds is not None:
|
282 |
+
raise ValueError(
|
283 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
284 |
+
" only forward one of the two."
|
285 |
+
)
|
286 |
+
elif prompt is None and prompt_embeds is None:
|
287 |
+
raise ValueError(
|
288 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
289 |
+
)
|
290 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
291 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
292 |
+
|
293 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
294 |
+
raise ValueError(
|
295 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
296 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
297 |
+
)
|
298 |
+
|
299 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
300 |
+
raise ValueError(
|
301 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
302 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
303 |
+
)
|
304 |
+
|
305 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
306 |
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
307 |
+
|
308 |
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
309 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
310 |
+
|
311 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
312 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
313 |
+
raise ValueError(
|
314 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
315 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
316 |
+
f" {negative_prompt_embeds.shape}."
|
317 |
+
)
|
318 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
319 |
+
raise ValueError(
|
320 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
321 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
322 |
+
f" {negative_prompt_attention_mask.shape}."
|
323 |
+
)
|
324 |
+
|
325 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
326 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
327 |
+
if clean_caption and not is_bs4_available():
|
328 |
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
329 |
+
logger.warning("Setting `clean_caption` to False...")
|
330 |
+
clean_caption = False
|
331 |
+
|
332 |
+
if clean_caption and not is_ftfy_available():
|
333 |
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
334 |
+
logger.warning("Setting `clean_caption` to False...")
|
335 |
+
clean_caption = False
|
336 |
+
|
337 |
+
if not isinstance(text, (tuple, list)):
|
338 |
+
text = [text]
|
339 |
+
|
340 |
+
def process(text: str):
|
341 |
+
if clean_caption:
|
342 |
+
text = self._clean_caption(text)
|
343 |
+
text = self._clean_caption(text)
|
344 |
+
else:
|
345 |
+
text = text.lower().strip()
|
346 |
+
return text
|
347 |
+
|
348 |
+
return [process(t) for t in text]
|
349 |
+
|
350 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
351 |
+
def _clean_caption(self, caption):
|
352 |
+
caption = str(caption)
|
353 |
+
caption = ul.unquote_plus(caption)
|
354 |
+
caption = caption.strip().lower()
|
355 |
+
caption = re.sub("<person>", "person", caption)
|
356 |
+
# urls:
|
357 |
+
caption = re.sub(
|
358 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
359 |
+
"",
|
360 |
+
caption,
|
361 |
+
) # regex for urls
|
362 |
+
caption = re.sub(
|
363 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
364 |
+
"",
|
365 |
+
caption,
|
366 |
+
) # regex for urls
|
367 |
+
# html:
|
368 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
369 |
+
|
370 |
+
# @<nickname>
|
371 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
372 |
+
|
373 |
+
# 31C0—31EF CJK Strokes
|
374 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
375 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
376 |
+
# 3300—33FF CJK Compatibility
|
377 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
378 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
379 |
+
# 4E00—9FFF CJK Unified Ideographs
|
380 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
381 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
382 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
383 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
384 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
385 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
386 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
387 |
+
#######################################################
|
388 |
+
|
389 |
+
# все виды тире / all types of dash --> "-"
|
390 |
+
caption = re.sub(
|
391 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
392 |
+
"-",
|
393 |
+
caption,
|
394 |
+
)
|
395 |
+
|
396 |
+
# кавычки к одному стандарту
|
397 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
398 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
399 |
+
|
400 |
+
# "
|
401 |
+
caption = re.sub(r""?", "", caption)
|
402 |
+
# &
|
403 |
+
caption = re.sub(r"&", "", caption)
|
404 |
+
|
405 |
+
# ip adresses:
|
406 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
407 |
+
|
408 |
+
# article ids:
|
409 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
410 |
+
|
411 |
+
# \n
|
412 |
+
caption = re.sub(r"\\n", " ", caption)
|
413 |
+
|
414 |
+
# "#123"
|
415 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
416 |
+
# "#12345.."
|
417 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
418 |
+
# "123456.."
|
419 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
420 |
+
# filenames:
|
421 |
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
422 |
+
|
423 |
+
#
|
424 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
425 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
426 |
+
|
427 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
428 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
429 |
+
|
430 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
431 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
432 |
+
if len(re.findall(regex2, caption)) > 3:
|
433 |
+
caption = re.sub(regex2, " ", caption)
|
434 |
+
|
435 |
+
caption = ftfy.fix_text(caption)
|
436 |
+
caption = html.unescape(html.unescape(caption))
|
437 |
+
|
438 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
439 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
440 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
441 |
+
|
442 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
443 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
444 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
445 |
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
446 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
447 |
+
|
448 |
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
449 |
+
|
450 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
451 |
+
|
452 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
453 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
454 |
+
caption = re.sub(r"\s+", " ", caption)
|
455 |
+
|
456 |
+
caption.strip()
|
457 |
+
|
458 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
459 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
460 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
461 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
462 |
+
|
463 |
+
return caption.strip()
|
464 |
+
|
465 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
466 |
+
def prepare_latents(
|
467 |
+
self,
|
468 |
+
batch_size,
|
469 |
+
num_channels_latents,
|
470 |
+
height,
|
471 |
+
width,
|
472 |
+
dtype,
|
473 |
+
device,
|
474 |
+
generator,
|
475 |
+
latents=None,
|
476 |
+
):
|
477 |
+
shape = (
|
478 |
+
batch_size,
|
479 |
+
num_channels_latents,
|
480 |
+
int(height) // self.vae_scale_factor,
|
481 |
+
int(width) // self.vae_scale_factor,
|
482 |
+
)
|
483 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
484 |
+
raise ValueError(
|
485 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
486 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
487 |
+
)
|
488 |
+
|
489 |
+
if latents is None:
|
490 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
491 |
+
else:
|
492 |
+
latents = latents.to(device)
|
493 |
+
|
494 |
+
return latents
|
495 |
+
|
496 |
+
@torch.no_grad()
|
497 |
+
def __call__(
|
498 |
+
self,
|
499 |
+
prompt: Union[str, List[str]] = None,
|
500 |
+
negative_prompt: str = "",
|
501 |
+
num_inference_steps: int = 20,
|
502 |
+
timesteps: List[int] = None,
|
503 |
+
sigmas: List[float] = None,
|
504 |
+
guidance_scale: float = 4.5,
|
505 |
+
num_images_per_prompt: Optional[int] = 1,
|
506 |
+
height: Optional[int] = None,
|
507 |
+
width: Optional[int] = None,
|
508 |
+
eta: float = 0.0,
|
509 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
510 |
+
latents: Optional[torch.Tensor] = None,
|
511 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
512 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
513 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
514 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
515 |
+
output_type: Optional[str] = "pil",
|
516 |
+
return_dict: bool = True,
|
517 |
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
518 |
+
callback_steps: int = 1,
|
519 |
+
clean_caption: bool = True,
|
520 |
+
max_sequence_length: int = 256,
|
521 |
+
**kwargs,
|
522 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
523 |
+
"""
|
524 |
+
Function invoked when calling the pipeline for generation.
|
525 |
+
Args:
|
526 |
+
prompt (`str` or `List[str]`, *optional*):
|
527 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
528 |
+
instead.
|
529 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
530 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
531 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
532 |
+
less than `1`).
|
533 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
534 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
535 |
+
expense of slower inference.
|
536 |
+
timesteps (`List[int]`, *optional*):
|
537 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
538 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
539 |
+
passed will be used. Must be in descending order.
|
540 |
+
sigmas (`List[float]`, *optional*):
|
541 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
542 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
543 |
+
will be used.
|
544 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
545 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
546 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
547 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
548 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
549 |
+
usually at the expense of lower image quality.
|
550 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
551 |
+
The number of images to generate per prompt.
|
552 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
553 |
+
The height in pixels of the generated image.
|
554 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
555 |
+
The width in pixels of the generated image.
|
556 |
+
eta (`float`, *optional*, defaults to 0.0):
|
557 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
558 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
559 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
560 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
561 |
+
to make generation deterministic.
|
562 |
+
latents (`torch.Tensor`, *optional*):
|
563 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
564 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
565 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
566 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
567 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
568 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
569 |
+
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
570 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
571 |
+
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
|
572 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
573 |
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
574 |
+
Pre-generated attention mask for negative text embeddings.
|
575 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
576 |
+
The output format of the generate image. Choose between
|
577 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
578 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
579 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
580 |
+
callback (`Callable`, *optional*):
|
581 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
582 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
583 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
584 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
585 |
+
called at every step.
|
586 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
587 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
588 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
589 |
+
prompt.
|
590 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
591 |
+
Examples:
|
592 |
+
Returns:
|
593 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
594 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
595 |
+
returned where the first element is a list with the generated images
|
596 |
+
"""
|
597 |
+
if "mask_feature" in kwargs:
|
598 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
599 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
600 |
+
# 1. Check inputs. Raise error if not correct
|
601 |
+
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
602 |
+
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
603 |
+
|
604 |
+
self.check_inputs(
|
605 |
+
prompt,
|
606 |
+
height,
|
607 |
+
width,
|
608 |
+
negative_prompt,
|
609 |
+
callback_steps,
|
610 |
+
prompt_embeds,
|
611 |
+
negative_prompt_embeds,
|
612 |
+
prompt_attention_mask,
|
613 |
+
negative_prompt_attention_mask,
|
614 |
+
)
|
615 |
+
|
616 |
+
# 2. Default height and width to transformer
|
617 |
+
if prompt is not None and isinstance(prompt, str):
|
618 |
+
batch_size = 1
|
619 |
+
elif prompt is not None and isinstance(prompt, list):
|
620 |
+
batch_size = len(prompt)
|
621 |
+
else:
|
622 |
+
batch_size = prompt_embeds.shape[0]
|
623 |
+
|
624 |
+
device = self._execution_device
|
625 |
+
|
626 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
627 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
628 |
+
# corresponds to doing no classifier free guidance.
|
629 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
630 |
+
|
631 |
+
# 3. Encode input prompt
|
632 |
+
(
|
633 |
+
prompt_embeds,
|
634 |
+
prompt_attention_mask,
|
635 |
+
negative_prompt_embeds,
|
636 |
+
negative_prompt_attention_mask,
|
637 |
+
) = self.encode_prompt(
|
638 |
+
prompt,
|
639 |
+
do_classifier_free_guidance,
|
640 |
+
negative_prompt=negative_prompt,
|
641 |
+
num_images_per_prompt=num_images_per_prompt,
|
642 |
+
device=device,
|
643 |
+
prompt_embeds=prompt_embeds,
|
644 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
645 |
+
prompt_attention_mask=prompt_attention_mask,
|
646 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
647 |
+
clean_caption=clean_caption,
|
648 |
+
max_sequence_length=max_sequence_length,
|
649 |
+
)
|
650 |
+
if do_classifier_free_guidance:
|
651 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
652 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
653 |
+
|
654 |
+
# 4. Prepare timesteps
|
655 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
656 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
657 |
+
)
|
658 |
+
# 5. Prepare latents.
|
659 |
+
latent_channels = self.transformer.config.in_channels
|
660 |
+
latents = self.prepare_latents(
|
661 |
+
batch_size * num_images_per_prompt,
|
662 |
+
latent_channels,
|
663 |
+
height,
|
664 |
+
width,
|
665 |
+
prompt_embeds.dtype,
|
666 |
+
device,
|
667 |
+
generator,
|
668 |
+
latents,
|
669 |
+
)
|
670 |
+
|
671 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
672 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
673 |
+
|
674 |
+
# 7. Denoising loop
|
675 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
676 |
+
|
677 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
678 |
+
for i, t in enumerate(timesteps):
|
679 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
680 |
+
# latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
681 |
+
|
682 |
+
current_timestep = t
|
683 |
+
if not torch.is_tensor(current_timestep):
|
684 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
685 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
686 |
+
is_mps = latent_model_input.device.type == "mps"
|
687 |
+
if isinstance(current_timestep, float):
|
688 |
+
dtype = torch.float32 if is_mps else torch.float64
|
689 |
+
else:
|
690 |
+
dtype = torch.int32 if is_mps else torch.int64
|
691 |
+
current_timestep = torch.tensor(
|
692 |
+
[current_timestep],
|
693 |
+
dtype=dtype,
|
694 |
+
device=latent_model_input.device,
|
695 |
+
)
|
696 |
+
elif len(current_timestep.shape) == 0:
|
697 |
+
current_timestep = current_timestep[None].to(latent_model_input.device)
|
698 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
699 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
700 |
+
|
701 |
+
# predict noise model_output
|
702 |
+
noise_pred = self.transformer(
|
703 |
+
latent_model_input,
|
704 |
+
encoder_hidden_states=prompt_embeds,
|
705 |
+
encoder_attention_mask=prompt_attention_mask,
|
706 |
+
timestep=current_timestep,
|
707 |
+
return_dict=False,
|
708 |
+
)[0]
|
709 |
+
|
710 |
+
# perform guidance
|
711 |
+
if do_classifier_free_guidance:
|
712 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
713 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
714 |
+
|
715 |
+
# learned sigma
|
716 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
717 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
718 |
+
else:
|
719 |
+
noise_pred = noise_pred
|
720 |
+
|
721 |
+
# compute previous image: x_t -> x_t-1
|
722 |
+
# if num_inference_steps == 1:
|
723 |
+
# # For DMD one step sampling: https://arxiv.org/abs/2311.18828
|
724 |
+
# latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
|
725 |
+
# else:
|
726 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
727 |
+
|
728 |
+
# call the callback, if provided
|
729 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
730 |
+
progress_bar.update()
|
731 |
+
if callback is not None and i % callback_steps == 0:
|
732 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
733 |
+
callback(step_idx, t, latents)
|
734 |
+
|
735 |
+
if not output_type == "latent":
|
736 |
+
image = self.vae.decode(latents / self.vae.scaling_factor).sample
|
737 |
+
else:
|
738 |
+
image = latents
|
739 |
+
|
740 |
+
if not output_type == "latent":
|
741 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
742 |
+
|
743 |
+
# Offload all models
|
744 |
+
self.maybe_free_model_hooks()
|
745 |
+
|
746 |
+
if not return_dict:
|
747 |
+
return (image,)
|
748 |
+
|
749 |
+
return ImagePipelineOutput(images=image)
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "FlowMatchEulerDiscreteScheduler",
|
3 |
+
"_diffusers_version": "0.33.1",
|
4 |
+
"base_image_seq_len": 256,
|
5 |
+
"base_shift": 0.5,
|
6 |
+
"invert_sigmas": false,
|
7 |
+
"max_image_seq_len": 4096,
|
8 |
+
"max_shift": 1.15,
|
9 |
+
"num_train_timesteps": 1000,
|
10 |
+
"shift": 3.0,
|
11 |
+
"shift_terminal": null,
|
12 |
+
"time_shift_type": "exponential",
|
13 |
+
"use_beta_sigmas": false,
|
14 |
+
"use_dynamic_shifting": false,
|
15 |
+
"use_exponential_sigmas": false,
|
16 |
+
"use_karras_sigmas": false
|
17 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-3.2-1B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128001,
|
10 |
+
"head_dim": 64,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 8192,
|
15 |
+
"max_position_embeddings": 131072,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_hidden_layers": 16,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 32.0,
|
25 |
+
"high_freq_factor": 4.0,
|
26 |
+
"low_freq_factor": 1.0,
|
27 |
+
"original_max_position_embeddings": 8192,
|
28 |
+
"rope_type": "llama3"
|
29 |
+
},
|
30 |
+
"rope_theta": 500000.0,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "bfloat16",
|
33 |
+
"transformers_version": "4.46.3",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 128256
|
36 |
+
}
|
text_encoder/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 128001,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.9,
|
8 |
+
"transformers_version": "4.46.3"
|
9 |
+
}
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end_of_text|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|end_of_text|>"
|
17 |
+
}
|
tokenizer/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
3 |
+
size 17209920
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,2062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"clean_up_tokenization_spaces": true,
|
2054 |
+
"eos_token": "<|end_of_text|>",
|
2055 |
+
"model_input_names": [
|
2056 |
+
"input_ids",
|
2057 |
+
"attention_mask"
|
2058 |
+
],
|
2059 |
+
"model_max_length": 131072,
|
2060 |
+
"pad_token": "<|end_of_text|>",
|
2061 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2062 |
+
}
|
transformer/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "EspressoDiTModel",
|
3 |
+
"_diffusers_version": "0.33.1",
|
4 |
+
"activation_fn": "gelu-approximate",
|
5 |
+
"attention_bias": true,
|
6 |
+
"attention_head_dim": 72,
|
7 |
+
"attention_type": "default",
|
8 |
+
"caption_channels": 2048,
|
9 |
+
"cross_attention_dim": 1152,
|
10 |
+
"dropout": 0.0,
|
11 |
+
"in_channels": 32,
|
12 |
+
"interpolation_scale": 2,
|
13 |
+
"norm_elementwise_affine": false,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"norm_num_groups": 32,
|
16 |
+
"norm_type": "ada_norm_single",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_embeds_ada_norm": 1000,
|
19 |
+
"num_layers": 28,
|
20 |
+
"out_channels": 32,
|
21 |
+
"patch_size": 1,
|
22 |
+
"projector_dim": 2048,
|
23 |
+
"repa_depth": -1,
|
24 |
+
"sample_size": 32,
|
25 |
+
"upcast_attention": false,
|
26 |
+
"z_dims": [
|
27 |
+
768
|
28 |
+
]
|
29 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7944fadbbaf35ec7c0fe3392f9f3f49302f2613ad6b19f8d56870779b6df6568
|
3 |
+
size 1217101024
|
transformer/transformer.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modifications Copyright (c) 2025 Advanced Micro Devices, Inc. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Any, Dict, Optional
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
20 |
+
from diffusers import PixArtTransformer2DModel as PixArtTransformer2DModelOriginal
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.attention import BasicTransformerBlock
|
23 |
+
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
|
24 |
+
from diffusers.models.modeling_utils import ModelMixin
|
25 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
26 |
+
from diffusers.utils import is_torch_version
|
27 |
+
|
28 |
+
|
29 |
+
def random_masking(x, mask_ratio):
|
30 |
+
"""
|
31 |
+
Perform per-sample random masking by per-sample shuffling.
|
32 |
+
Per-sample shuffling is done by argsort random noise.
|
33 |
+
x: [N, L, D], sequence
|
34 |
+
"""
|
35 |
+
N, L, D = x.shape # batch, length, dim
|
36 |
+
len_keep = int(L * (1 - mask_ratio))
|
37 |
+
|
38 |
+
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
|
39 |
+
|
40 |
+
ids_keep = torch.argsort(noise, dim=1)[:, :len_keep]
|
41 |
+
ids_keep, _ = torch.sort(ids_keep, dim=1)
|
42 |
+
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
43 |
+
return x_masked, ids_keep, len_keep
|
44 |
+
|
45 |
+
|
46 |
+
def build_projector(hidden_size, projector_dim, z_dim):
|
47 |
+
return nn.Sequential(
|
48 |
+
nn.Linear(hidden_size, projector_dim),
|
49 |
+
nn.SiLU(),
|
50 |
+
nn.Linear(projector_dim, projector_dim),
|
51 |
+
nn.SiLU(),
|
52 |
+
nn.Linear(projector_dim, z_dim),
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
# Source: https://github.com/NVlabs/Sana/blob/70459f414474c10c509e8b58f3f9442738f85577/diffusion/model/norms.py#L183
|
57 |
+
class RMSNorm(torch.nn.Module):
|
58 |
+
def __init__(self, dim: int, scale_factor=1.0, eps: float = 1e-6):
|
59 |
+
"""
|
60 |
+
Initialize the RMSNorm normalization layer.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
dim (int): The dimension of the input tensor.
|
64 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
65 |
+
|
66 |
+
Attributes:
|
67 |
+
eps (float): A small value added to the denominator for numerical stability.
|
68 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
69 |
+
|
70 |
+
"""
|
71 |
+
super().__init__()
|
72 |
+
self.eps = eps
|
73 |
+
self.weight = torch.nn.Parameter(torch.ones(dim) * scale_factor)
|
74 |
+
|
75 |
+
def _norm(self, x):
|
76 |
+
"""
|
77 |
+
Apply the RMSNorm normalization to the input tensor.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
x (torch.Tensor): The input tensor.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
torch.Tensor: The normalized tensor.
|
84 |
+
|
85 |
+
"""
|
86 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
"""
|
90 |
+
Forward pass through the RMSNorm layer.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
x (torch.Tensor): The input tensor.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
97 |
+
|
98 |
+
"""
|
99 |
+
return (self.weight * self._norm(x.float())).type_as(x)
|
100 |
+
|
101 |
+
|
102 |
+
# Modified from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/pixart_transformer_2d.py
|
103 |
+
class EspressoDiTModel(ModelMixin, ConfigMixin):
|
104 |
+
_supports_gradient_checkpointing = True
|
105 |
+
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
|
106 |
+
|
107 |
+
@register_to_config
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
num_attention_heads: int = 16,
|
111 |
+
attention_head_dim: int = 72,
|
112 |
+
in_channels: int = 4,
|
113 |
+
out_channels: Optional[int] = 8,
|
114 |
+
num_layers: int = 28,
|
115 |
+
dropout: float = 0.0,
|
116 |
+
norm_num_groups: int = 32,
|
117 |
+
cross_attention_dim: Optional[int] = 1152,
|
118 |
+
attention_bias: bool = True,
|
119 |
+
sample_size: int = 128,
|
120 |
+
patch_size: int = 2,
|
121 |
+
activation_fn: str = "gelu-approximate",
|
122 |
+
num_embeds_ada_norm: Optional[int] = 1000,
|
123 |
+
upcast_attention: bool = False,
|
124 |
+
norm_type: str = "ada_norm_single",
|
125 |
+
norm_elementwise_affine: bool = False,
|
126 |
+
norm_eps: float = 1e-6,
|
127 |
+
interpolation_scale: Optional[int] = None,
|
128 |
+
caption_channels: Optional[int] = None,
|
129 |
+
attention_type: Optional[str] = "default",
|
130 |
+
repa_depth=-1,
|
131 |
+
projector_dim=2048,
|
132 |
+
z_dims=[768],
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
# copy over some functions to avoid duplicating the code
|
136 |
+
_tmp_original_model = PixArtTransformer2DModelOriginal()
|
137 |
+
self.fuse_qkv_projections = _tmp_original_model.fuse_qkv_projections
|
138 |
+
self.unfuse_qkv_projections = _tmp_original_model.unfuse_qkv_projections
|
139 |
+
self.set_default_attn_processor = _tmp_original_model.set_default_attn_processor
|
140 |
+
self.set_attn_processor = _tmp_original_model.set_attn_processor
|
141 |
+
self.attn_processors = _tmp_original_model.attn_processors
|
142 |
+
del _tmp_original_model
|
143 |
+
|
144 |
+
self.patch_mixer_depth = None # initially no masking applied
|
145 |
+
self.mask_ratio = 0
|
146 |
+
|
147 |
+
if repa_depth != -1:
|
148 |
+
self.projectors = nn.ModuleList(
|
149 |
+
[build_projector(cross_attention_dim, projector_dim, z_dim) for z_dim in z_dims]
|
150 |
+
)
|
151 |
+
assert repa_depth >= 0 and repa_depth < num_layers
|
152 |
+
self.repa_depth = repa_depth
|
153 |
+
|
154 |
+
# Validate inputs.
|
155 |
+
if norm_type != "ada_norm_single":
|
156 |
+
raise NotImplementedError(
|
157 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
158 |
+
)
|
159 |
+
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
|
160 |
+
raise ValueError(
|
161 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
162 |
+
)
|
163 |
+
|
164 |
+
# Set some common variables used across the board.
|
165 |
+
self.attention_head_dim = attention_head_dim
|
166 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
167 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
168 |
+
|
169 |
+
self.gradient_checkpointing = False
|
170 |
+
|
171 |
+
# 2. Initialize the position embedding and transformer blocks.
|
172 |
+
self.height = self.config.sample_size
|
173 |
+
self.width = self.config.sample_size
|
174 |
+
|
175 |
+
interpolation_scale = (
|
176 |
+
self.config.interpolation_scale
|
177 |
+
if self.config.interpolation_scale is not None
|
178 |
+
else max(self.config.sample_size // 64, 1)
|
179 |
+
)
|
180 |
+
|
181 |
+
self.pos_embed = PatchEmbed(
|
182 |
+
height=self.config.sample_size,
|
183 |
+
width=self.config.sample_size,
|
184 |
+
patch_size=self.config.patch_size,
|
185 |
+
in_channels=self.config.in_channels,
|
186 |
+
embed_dim=self.inner_dim,
|
187 |
+
interpolation_scale=interpolation_scale,
|
188 |
+
)
|
189 |
+
|
190 |
+
self.transformer_blocks = nn.ModuleList(
|
191 |
+
[
|
192 |
+
BasicTransformerBlock(
|
193 |
+
self.inner_dim,
|
194 |
+
self.config.num_attention_heads,
|
195 |
+
self.config.attention_head_dim,
|
196 |
+
dropout=self.config.dropout,
|
197 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
198 |
+
activation_fn=self.config.activation_fn,
|
199 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
200 |
+
attention_bias=self.config.attention_bias,
|
201 |
+
upcast_attention=self.config.upcast_attention,
|
202 |
+
norm_type=norm_type,
|
203 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
204 |
+
norm_eps=self.config.norm_eps,
|
205 |
+
attention_type=self.config.attention_type,
|
206 |
+
)
|
207 |
+
for _ in range(self.config.num_layers)
|
208 |
+
]
|
209 |
+
)
|
210 |
+
|
211 |
+
# 3. Output blocks.
|
212 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
213 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
214 |
+
self.proj_out = nn.Linear(
|
215 |
+
self.inner_dim,
|
216 |
+
self.config.patch_size * self.config.patch_size * self.out_channels,
|
217 |
+
)
|
218 |
+
|
219 |
+
self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False)
|
220 |
+
self.caption_projection = None
|
221 |
+
if self.config.caption_channels is not None:
|
222 |
+
self.caption_projection = PixArtAlphaTextProjection(
|
223 |
+
in_features=self.config.caption_channels, hidden_size=self.inner_dim
|
224 |
+
)
|
225 |
+
|
226 |
+
self.text_embedding_norm = RMSNorm(
|
227 |
+
self.inner_dim if self.caption_projection else self.config.caption_channels,
|
228 |
+
scale_factor=0.01,
|
229 |
+
eps=1e-5,
|
230 |
+
)
|
231 |
+
|
232 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
233 |
+
if hasattr(module, "gradient_checkpointing"):
|
234 |
+
module.gradient_checkpointing = value
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
hidden_states: torch.Tensor,
|
239 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
240 |
+
timestep: Optional[torch.LongTensor] = None,
|
241 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
242 |
+
attention_mask: Optional[torch.Tensor] = None,
|
243 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
244 |
+
return_dict: bool = True,
|
245 |
+
):
|
246 |
+
"""
|
247 |
+
Args:
|
248 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
249 |
+
Input `hidden_states`.
|
250 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
251 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
252 |
+
self-attention.
|
253 |
+
timestep (`torch.LongTensor`, *optional*):
|
254 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
255 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
256 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
257 |
+
`self.processor` in
|
258 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
259 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
260 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
261 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
262 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
263 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
264 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
265 |
+
|
266 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
267 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
268 |
+
|
269 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
270 |
+
above. This bias will be added to the cross-attention scores.
|
271 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
272 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
273 |
+
tuple.
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
277 |
+
`tuple` where the first element is the sample tensor.
|
278 |
+
"""
|
279 |
+
|
280 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
281 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
282 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
283 |
+
# expects mask of shape:
|
284 |
+
# [batch, key_tokens]
|
285 |
+
# adds singleton query_tokens dimension:
|
286 |
+
# [batch, 1, key_tokens]
|
287 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
288 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
289 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
290 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
291 |
+
# assume that mask is expressed as:
|
292 |
+
# (1 = keep, 0 = discard)
|
293 |
+
# convert mask into a bias that can be added to attention scores:
|
294 |
+
# (keep = +0, discard = -10000.0)
|
295 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
296 |
+
attention_mask = attention_mask.unsqueeze(1)
|
297 |
+
|
298 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
299 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
300 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
301 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
302 |
+
|
303 |
+
# 1. Input
|
304 |
+
batch_size = hidden_states.shape[0]
|
305 |
+
height, width = (
|
306 |
+
hidden_states.shape[-2] // self.config.patch_size,
|
307 |
+
hidden_states.shape[-1] // self.config.patch_size,
|
308 |
+
)
|
309 |
+
hidden_states = self.pos_embed(hidden_states)
|
310 |
+
|
311 |
+
timestep, embedded_timestep = self.adaln_single(
|
312 |
+
timestep,
|
313 |
+
batch_size=batch_size,
|
314 |
+
hidden_dtype=hidden_states.dtype,
|
315 |
+
)
|
316 |
+
|
317 |
+
if self.caption_projection is not None:
|
318 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
319 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
320 |
+
|
321 |
+
encoder_hidden_states = self.text_embedding_norm(encoder_hidden_states)
|
322 |
+
|
323 |
+
ids_keep = None
|
324 |
+
len_keep = hidden_states.shape[1]
|
325 |
+
zs = None
|
326 |
+
# 2. Blocks
|
327 |
+
for blk_ind, block in enumerate(self.transformer_blocks):
|
328 |
+
if self.training and self.gradient_checkpointing and block.gradient_checkpointing:
|
329 |
+
|
330 |
+
def create_custom_forward(module, return_dict=None):
|
331 |
+
def custom_forward(*inputs):
|
332 |
+
if return_dict is not None:
|
333 |
+
return module(*inputs, return_dict=return_dict)
|
334 |
+
else:
|
335 |
+
return module(*inputs)
|
336 |
+
|
337 |
+
return custom_forward
|
338 |
+
|
339 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
340 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
341 |
+
create_custom_forward(block),
|
342 |
+
hidden_states,
|
343 |
+
attention_mask,
|
344 |
+
encoder_hidden_states,
|
345 |
+
encoder_attention_mask,
|
346 |
+
timestep,
|
347 |
+
cross_attention_kwargs,
|
348 |
+
None,
|
349 |
+
**ckpt_kwargs,
|
350 |
+
)
|
351 |
+
else:
|
352 |
+
hidden_states = block(
|
353 |
+
hidden_states,
|
354 |
+
attention_mask=attention_mask,
|
355 |
+
encoder_hidden_states=encoder_hidden_states,
|
356 |
+
encoder_attention_mask=encoder_attention_mask,
|
357 |
+
timestep=timestep,
|
358 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
359 |
+
class_labels=None,
|
360 |
+
)
|
361 |
+
|
362 |
+
# patch masking
|
363 |
+
if self.training and (self.patch_mixer_depth != -1) and (self.patch_mixer_depth == blk_ind):
|
364 |
+
hidden_states, ids_keep, len_keep = random_masking(hidden_states, self.mask_ratio)
|
365 |
+
|
366 |
+
# REPA
|
367 |
+
if self.training and (self.repa_depth != -1) and (self.repa_depth == blk_ind):
|
368 |
+
N, T, D = hidden_states.shape
|
369 |
+
zs = [projector(hidden_states.reshape(-1, D)).reshape(N, len_keep, -1) for projector in self.projectors]
|
370 |
+
|
371 |
+
# 3. Output
|
372 |
+
shift, scale = (
|
373 |
+
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
|
374 |
+
).chunk(2, dim=1)
|
375 |
+
hidden_states = self.norm_out(hidden_states)
|
376 |
+
# Modulation
|
377 |
+
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
|
378 |
+
hidden_states = self.proj_out(hidden_states)
|
379 |
+
hidden_states = hidden_states.squeeze(1)
|
380 |
+
|
381 |
+
# if inference, return the unpatchified output as usual
|
382 |
+
# if training, return the patch sequence
|
383 |
+
if not self.training:
|
384 |
+
hidden_states = hidden_states.reshape(
|
385 |
+
shape=(
|
386 |
+
-1,
|
387 |
+
height,
|
388 |
+
width,
|
389 |
+
self.config.patch_size,
|
390 |
+
self.config.patch_size,
|
391 |
+
self.out_channels,
|
392 |
+
)
|
393 |
+
)
|
394 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
395 |
+
output = hidden_states.reshape(
|
396 |
+
shape=(
|
397 |
+
-1,
|
398 |
+
self.out_channels,
|
399 |
+
height * self.config.patch_size,
|
400 |
+
width * self.config.patch_size,
|
401 |
+
)
|
402 |
+
)
|
403 |
+
|
404 |
+
if not return_dict:
|
405 |
+
return (output,)
|
406 |
+
|
407 |
+
return Transformer2DModelOutput(sample=output)
|
408 |
+
else:
|
409 |
+
return hidden_states, ids_keep, zs
|
410 |
+
|
411 |
+
def enable_masking(self, depth, mask_ratio):
|
412 |
+
# depth: apply masking after block_[depth]. should be [0, nblks-1]
|
413 |
+
assert depth >= 0 and depth < len(self.transformer_blocks)
|
414 |
+
self.patch_mixer_depth = depth
|
415 |
+
assert mask_ratio >= 0 and mask_ratio <= 1
|
416 |
+
self.mask_ratio = mask_ratio
|
417 |
+
|
418 |
+
def disable_masking(self):
|
419 |
+
self.patch_mixer_depth = None
|
420 |
+
|
421 |
+
def enable_gradient_checkpointing(self, nblocks_to_apply_grad_checkpointing):
|
422 |
+
N = len(self.transformer_blocks)
|
423 |
+
|
424 |
+
if nblocks_to_apply_grad_checkpointing == -1:
|
425 |
+
nblocks_to_apply_grad_checkpointing = N
|
426 |
+
nblocks_to_apply_grad_checkpointing = min(N, nblocks_to_apply_grad_checkpointing)
|
427 |
+
|
428 |
+
# Apply to blocks evenly spaced out
|
429 |
+
step = N / nblocks_to_apply_grad_checkpointing if nblocks_to_apply_grad_checkpointing > 0 else 0
|
430 |
+
indices = [int((i + 0.5) * step) for i in range(nblocks_to_apply_grad_checkpointing)]
|
431 |
+
|
432 |
+
self.gradient_checkpointing = True
|
433 |
+
for blk_ind, block in enumerate(self.transformer_blocks):
|
434 |
+
block.gradient_checkpointing = blk_ind in indices
|
435 |
+
print(f"Block {blk_ind} grad checkpointing set to {block.gradient_checkpointing}")
|
vae/config.json
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderDC",
|
3 |
+
"_diffusers_version": "0.33.1",
|
4 |
+
"_name_or_path": "mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers",
|
5 |
+
"attention_head_dim": 32,
|
6 |
+
"decoder_act_fns": "silu",
|
7 |
+
"decoder_block_out_channels": [
|
8 |
+
128,
|
9 |
+
256,
|
10 |
+
512,
|
11 |
+
512,
|
12 |
+
1024,
|
13 |
+
1024
|
14 |
+
],
|
15 |
+
"decoder_block_types": [
|
16 |
+
"ResBlock",
|
17 |
+
"ResBlock",
|
18 |
+
"ResBlock",
|
19 |
+
"EfficientViTBlock",
|
20 |
+
"EfficientViTBlock",
|
21 |
+
"EfficientViTBlock"
|
22 |
+
],
|
23 |
+
"decoder_layers_per_block": [
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
3,
|
27 |
+
3,
|
28 |
+
3,
|
29 |
+
3
|
30 |
+
],
|
31 |
+
"decoder_norm_types": "rms_norm",
|
32 |
+
"decoder_qkv_multiscales": [
|
33 |
+
[],
|
34 |
+
[],
|
35 |
+
[],
|
36 |
+
[
|
37 |
+
5
|
38 |
+
],
|
39 |
+
[
|
40 |
+
5
|
41 |
+
],
|
42 |
+
[
|
43 |
+
5
|
44 |
+
]
|
45 |
+
],
|
46 |
+
"downsample_block_type": "Conv",
|
47 |
+
"encoder_block_out_channels": [
|
48 |
+
128,
|
49 |
+
256,
|
50 |
+
512,
|
51 |
+
512,
|
52 |
+
1024,
|
53 |
+
1024
|
54 |
+
],
|
55 |
+
"encoder_block_types": [
|
56 |
+
"ResBlock",
|
57 |
+
"ResBlock",
|
58 |
+
"ResBlock",
|
59 |
+
"EfficientViTBlock",
|
60 |
+
"EfficientViTBlock",
|
61 |
+
"EfficientViTBlock"
|
62 |
+
],
|
63 |
+
"encoder_layers_per_block": [
|
64 |
+
2,
|
65 |
+
2,
|
66 |
+
2,
|
67 |
+
3,
|
68 |
+
3,
|
69 |
+
3
|
70 |
+
],
|
71 |
+
"encoder_qkv_multiscales": [
|
72 |
+
[],
|
73 |
+
[],
|
74 |
+
[],
|
75 |
+
[
|
76 |
+
5
|
77 |
+
],
|
78 |
+
[
|
79 |
+
5
|
80 |
+
],
|
81 |
+
[
|
82 |
+
5
|
83 |
+
]
|
84 |
+
],
|
85 |
+
"in_channels": 3,
|
86 |
+
"latent_channels": 32,
|
87 |
+
"scaling_factor": 0.41407,
|
88 |
+
"upsample_block_type": "interpolate"
|
89 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:124bbf5ed3c731b41243c49141480c92b3428d132d3bdfa690c8a1d92b45f16c
|
3 |
+
size 624544454
|