# Modifications Copyright (c) 2025 Advanced Micro Devices, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch import torch.nn as nn from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers import PixArtTransformer2DModel as PixArtTransformer2DModelOriginal from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.attention import BasicTransformerBlock from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormSingle from diffusers.utils import is_torch_version def random_masking(x, mask_ratio): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. x: [N, L, D], sequence """ N, L, D = x.shape # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] ids_keep = torch.argsort(noise, dim=1)[:, :len_keep] ids_keep, _ = torch.sort(ids_keep, dim=1) x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) return x_masked, ids_keep, len_keep def build_projector(hidden_size, projector_dim, z_dim): return nn.Sequential( nn.Linear(hidden_size, projector_dim), nn.SiLU(), nn.Linear(projector_dim, projector_dim), nn.SiLU(), nn.Linear(projector_dim, z_dim), ) # Source: https://github.com/NVlabs/Sana/blob/70459f414474c10c509e8b58f3f9442738f85577/diffusion/model/norms.py#L183 class RMSNorm(torch.nn.Module): def __init__(self, dim: int, scale_factor=1.0, eps: float = 1e-6): """ Initialize the RMSNorm normalization layer. Args: dim (int): The dimension of the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. Attributes: eps (float): A small value added to the denominator for numerical stability. weight (nn.Parameter): Learnable scaling parameter. """ super().__init__() self.eps = eps self.weight = torch.nn.Parameter(torch.ones(dim) * scale_factor) def _norm(self, x): """ Apply the RMSNorm normalization to the input tensor. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The normalized tensor. """ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): """ Forward pass through the RMSNorm layer. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The output tensor after applying RMSNorm. """ return (self.weight * self._norm(x.float())).type_as(x) # Modified from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/pixart_transformer_2d.py class NitroDiTModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True _no_split_modules = ["BasicTransformerBlock", "PatchEmbed"] @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 72, in_channels: int = 4, out_channels: Optional[int] = 8, num_layers: int = 28, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = 1152, attention_bias: bool = True, sample_size: int = 128, patch_size: int = 2, activation_fn: str = "gelu-approximate", num_embeds_ada_norm: Optional[int] = 1000, upcast_attention: bool = False, norm_type: str = "ada_norm_single", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, interpolation_scale: Optional[int] = None, caption_channels: Optional[int] = None, attention_type: Optional[str] = "default", repa_depth=-1, projector_dim=2048, z_dims=[768], ): super().__init__() # copy over some functions to avoid duplicating the code _tmp_original_model = PixArtTransformer2DModelOriginal() self.fuse_qkv_projections = _tmp_original_model.fuse_qkv_projections self.unfuse_qkv_projections = _tmp_original_model.unfuse_qkv_projections self.set_default_attn_processor = _tmp_original_model.set_default_attn_processor self.set_attn_processor = _tmp_original_model.set_attn_processor self.attn_processors = _tmp_original_model.attn_processors del _tmp_original_model self.patch_mixer_depth = None # initially no masking applied self.mask_ratio = 0 if repa_depth != -1: self.projectors = nn.ModuleList( [build_projector(cross_attention_dim, projector_dim, z_dim) for z_dim in z_dims] ) assert repa_depth >= 0 and repa_depth < num_layers self.repa_depth = repa_depth # Validate inputs. if norm_type != "ada_norm_single": raise NotImplementedError( f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." ) elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None: raise ValueError( f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." ) # Set some common variables used across the board. self.attention_head_dim = attention_head_dim self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.out_channels = in_channels if out_channels is None else out_channels self.gradient_checkpointing = False # 2. Initialize the position embedding and transformer blocks. self.height = self.config.sample_size self.width = self.config.sample_size interpolation_scale = ( self.config.interpolation_scale if self.config.interpolation_scale is not None else max(self.config.sample_size // 64, 1) ) self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, interpolation_scale=interpolation_scale, ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type, ) for _ in range(self.config.num_layers) ] ) # 3. Output blocks. self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) self.proj_out = nn.Linear( self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels, ) self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False) self.caption_projection = None if self.config.caption_channels is not None: self.caption_projection = PixArtAlphaTextProjection( in_features=self.config.caption_channels, hidden_size=self.inner_dim ) self.text_embedding_norm = RMSNorm( self.inner_dim if self.caption_projection else self.config.caption_channels, scale_factor=0.01, eps=1e-5, ) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep (`torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size = hidden_states.shape[0] height, width = ( hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size, ) hidden_states = self.pos_embed(hidden_states) timestep, embedded_timestep = self.adaln_single( timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype, ) if self.caption_projection is not None: encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) encoder_hidden_states = self.text_embedding_norm(encoder_hidden_states) ids_keep = None len_keep = hidden_states.shape[1] zs = None # 2. Blocks for blk_ind, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing and block.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, None, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=None, ) # patch masking if self.training and (self.patch_mixer_depth != -1) and (self.patch_mixer_depth == blk_ind): hidden_states, ids_keep, len_keep = random_masking(hidden_states, self.mask_ratio) # REPA if self.training and (self.repa_depth != -1) and (self.repa_depth == blk_ind): N, T, D = hidden_states.shape zs = [projector(hidden_states.reshape(-1, D)).reshape(N, len_keep, -1) for projector in self.projectors] # 3. Output shift, scale = ( self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device) ).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.squeeze(1) # if inference, return the unpatchified output as usual # if training, return the patch sequence if not self.training: hidden_states = hidden_states.reshape( shape=( -1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels, ) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=( -1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size, ) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) else: return hidden_states, ids_keep, zs def enable_masking(self, depth, mask_ratio): # depth: apply masking after block_[depth]. should be [0, nblks-1] assert depth >= 0 and depth < len(self.transformer_blocks) self.patch_mixer_depth = depth assert mask_ratio >= 0 and mask_ratio <= 1 self.mask_ratio = mask_ratio def disable_masking(self): self.patch_mixer_depth = None def enable_gradient_checkpointing(self, nblocks_to_apply_grad_checkpointing): N = len(self.transformer_blocks) if nblocks_to_apply_grad_checkpointing == -1: nblocks_to_apply_grad_checkpointing = N nblocks_to_apply_grad_checkpointing = min(N, nblocks_to_apply_grad_checkpointing) # Apply to blocks evenly spaced out step = N / nblocks_to_apply_grad_checkpointing if nblocks_to_apply_grad_checkpointing > 0 else 0 indices = [int((i + 0.5) * step) for i in range(nblocks_to_apply_grad_checkpointing)] self.gradient_checkpointing = True for blk_ind, block in enumerate(self.transformer_blocks): block.gradient_checkpointing = blk_ind in indices print(f"Block {blk_ind} grad checkpointing set to {block.gradient_checkpointing}")