File size: 1,427 Bytes
1fec2a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env python
r"""Create a list containing image names and their corresponding class indices
for ImageNet validation data.

The directory structure of the original ImageNet validation data set is
expected to be:

 data_dir/ILSVRC2012_val_00000001.JPEG
 data_dir/ILSVRC2012_val_00000002.JPEG
 ...
 date_dir/ILSVRC2012_val_00050000.JPEG

This script generate a list like:
 ILSVRC2012_val_00000001.JPEG 65
 ILSVRC2012_val_00000002.JPEG 970
 ...
 ILSVRC2012_val_00050000.JPEG 355

Usage:
  Download https://github.com/tensorflow/models/blob/master/research/slim/datasets/imagenet_2012_validation_synset_labels.txt and then,
  ./create_image_labels.py imagenet_2012_validation_synset_labels.txt
"""

import sys

if __name__ == '__main__':
  if len(sys.argv) < 2:
    print('Usage: ./create_image_labels.py <labels file>')
    sys.exit(-1)
  labels_file = sys.argv[1]

  labels = [l.strip() for l in open(labels_file).readlines()]
  sorted_labels = sorted(labels)
  class_idx = 0
  label_to_class_idx = {}
  for label in sorted_labels:
    if label not in label_to_class_idx:
      label_to_class_idx[label] = class_idx
      class_idx += 1

  image_list_file = 'val.txt'
  with open(image_list_file, 'w') as f:
    for i, label in enumerate(labels):
      image_name = 'ILSVRC2012_val_000%.5d.JPEG' % (i + 1)
      f.write(f'{image_name} {label_to_class_idx[label]}\n')
  print(f'Output image list file: {image_list_file}')