zhengrongzhang
commited on
Commit
·
6f8454f
1
Parent(s):
b9424a5
init model
Browse files- README.md +122 -0
- eval_onnx.py +161 -0
- mobilenetv2_int8.onnx +3 -0
- requirements.txt +5 -0
README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- RyzenAI
|
5 |
+
- image-classification
|
6 |
+
- onnx
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
---
|
12 |
+
|
13 |
+
## MobileNetV2
|
14 |
+
|
15 |
+
MobileNetV2 is an image classification model pre-trained on ImageNet-1k dataset at resolution 224x224. It was introduced in the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler et al. and first released in [this repository](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet).
|
16 |
+
|
17 |
+
We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/).
|
18 |
+
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
MobileNetV2 is a simple network architecture that allows to build a family of highly efficient mobile models. It allows memory-efficient inference. MobileNetV2 is a model typically used for image classification tasks. And also can be used for object detection and image segmentation tasks. All tasks show competitive results.
|
23 |
+
|
24 |
+
The model is named **mobilenet_v2_depth_size**, for example, **mobilenet_v2_1.4_224**, where **1.4** is the depth multiplier and **224** is the resolution of the input images the model was trained on.
|
25 |
+
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v2) to look for fine-tuned versions on a task that interests you.
|
30 |
+
|
31 |
+
|
32 |
+
## How to use
|
33 |
+
|
34 |
+
### Installation
|
35 |
+
|
36 |
+
1. Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
|
37 |
+
|
38 |
+
2. Run the following script to install pre-requisites for this model.
|
39 |
+
|
40 |
+
```shell
|
41 |
+
pip install -r requirements.txt
|
42 |
+
```
|
43 |
+
|
44 |
+
### Test & Evaluation
|
45 |
+
|
46 |
+
- Inference one image (Image Classification):
|
47 |
+
|
48 |
+
```python
|
49 |
+
import sys
|
50 |
+
import onnxruntime
|
51 |
+
import torch
|
52 |
+
import torchvision.transforms as transforms
|
53 |
+
from PIL import Image
|
54 |
+
|
55 |
+
image_path = sys.argv[1]
|
56 |
+
onnx_model = sys.argv[2]
|
57 |
+
|
58 |
+
normalize = transforms.Normalize(
|
59 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
60 |
+
img_transformer = transforms.Compose([
|
61 |
+
transforms.Resize(256),
|
62 |
+
transforms.CenterCrop(224),
|
63 |
+
transforms.ToTensor(),
|
64 |
+
normalize])
|
65 |
+
img_tensor = img_transformer(Image.open(image_path)).unsqueeze(0)
|
66 |
+
|
67 |
+
so = onnxruntime.SessionOptions()
|
68 |
+
ort_session = onnxruntime.InferenceSession(
|
69 |
+
onnx_model, so,
|
70 |
+
providers=['CPUExecutionProvider'],
|
71 |
+
provider_options=None)
|
72 |
+
input = img_tensor.numpy()
|
73 |
+
ort_input = {ort_session.get_inputs()[0].name: input}
|
74 |
+
|
75 |
+
output = ort_session.run(None, ort_input)
|
76 |
+
top5_probabilities, top5_class_indices = torch.topk(torch.nn.functional.softmax(torch.tensor(output[0])), k=5)
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
- Evaluate ImageNet validation dataset (50,000 Images), using `eval_onnx.py` .
|
82 |
+
|
83 |
+
- Test accuracy of the quantized model on CPU.
|
84 |
+
|
85 |
+
```shell
|
86 |
+
python eval_onnx.py --onnx_model=./mobilenetv2_int8.onnx --data_dir=./{DATA_PATH}
|
87 |
+
```
|
88 |
+
|
89 |
+
- Test accuracy of the quantized model on IPU.
|
90 |
+
|
91 |
+
```shell
|
92 |
+
python eval_onnx.py --onnx_model=./mobilenetv2_int8.onnx --data_dir=./{DATA_PATH} --ipu --provider_config Path\To\vaip_config.json
|
93 |
+
```
|
94 |
+
- Users can use `vaip_config.json` in folder `voe-4.0-win_amd64` of `ryzen-ai-sw-1.0.zip` file.
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
`DATA_PATH`: Path to ImageNet dataset where contains the `validation` folder.
|
99 |
+
|
100 |
+
### Performance
|
101 |
+
|
102 |
+
Dataset: ImageNet validation dataset (50,000 images).
|
103 |
+
|
104 |
+
| Metric | Accuracy on IPU |
|
105 |
+
| :-----------------: | :-------------: |
|
106 |
+
| top1& top5 accuracy | 75.62% / 92.52% |
|
107 |
+
|
108 |
+
## Citation
|
109 |
+
|
110 |
+
|
111 |
+
```bibtex
|
112 |
+
@article{MobileNet v2,
|
113 |
+
author = {Mark Sandler and
|
114 |
+
Andrew G. Howard and
|
115 |
+
Menglong Zhu and
|
116 |
+
Andrey Zhmoginov and
|
117 |
+
Liang{-}Chieh Chen},
|
118 |
+
title = {MobileNetV2: Inverted Residuals and Linear Bottlenecks},
|
119 |
+
year = {2018},
|
120 |
+
url = {http://arxiv.org/abs/1801.04381},
|
121 |
+
}
|
122 |
+
```
|
eval_onnx.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import onnxruntime
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
import time
|
10 |
+
import torch
|
11 |
+
import torchvision.datasets as datasets
|
12 |
+
import torchvision.transforms as transforms
|
13 |
+
from torchvision.transforms import InterpolationMode
|
14 |
+
from torch.utils.data import DataLoader
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument(
|
19 |
+
"--onnx_model", default="model.onnx", help="Input onnx model")
|
20 |
+
parser.add_argument(
|
21 |
+
"--data_dir",
|
22 |
+
default="/workspace/dataset/imagenet",
|
23 |
+
help="Directory of dataset")
|
24 |
+
parser.add_argument(
|
25 |
+
"--batch_size", default=1, type=int, help="Evaluation batch size")
|
26 |
+
parser.add_argument(
|
27 |
+
"--ipu",
|
28 |
+
action="store_true",
|
29 |
+
help="Use IPU for inference.",
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--provider_config",
|
33 |
+
type=str,
|
34 |
+
default="vaip_config.json",
|
35 |
+
help="Path of the config file for seting provider_options.",
|
36 |
+
)
|
37 |
+
args = parser.parse_args()
|
38 |
+
|
39 |
+
class AverageMeter(object):
|
40 |
+
"""Computes and stores the average and current value"""
|
41 |
+
|
42 |
+
def __init__(self, name, fmt=':f'):
|
43 |
+
self.name = name
|
44 |
+
self.fmt = fmt
|
45 |
+
self.reset()
|
46 |
+
|
47 |
+
def reset(self):
|
48 |
+
self.val = 0
|
49 |
+
self.avg = 0
|
50 |
+
self.sum = 0
|
51 |
+
self.count = 0
|
52 |
+
|
53 |
+
def update(self, val, n=1):
|
54 |
+
self.val = val
|
55 |
+
self.sum += val * n
|
56 |
+
self.count += n
|
57 |
+
self.avg = self.sum / self.count
|
58 |
+
|
59 |
+
def __str__(self):
|
60 |
+
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
|
61 |
+
return fmtstr.format(**self.__dict__)
|
62 |
+
|
63 |
+
def accuracy(output: torch.Tensor,
|
64 |
+
target: torch.Tensor,
|
65 |
+
topk: Tuple[int] = (1,)) -> Tuple[float]:
|
66 |
+
"""Computes the accuracy over the k top predictions for the specified values of k.
|
67 |
+
Args:
|
68 |
+
output: Prediction of the model.
|
69 |
+
target: Ground truth labels.
|
70 |
+
topk: Topk accuracy to compute.
|
71 |
+
Returns:
|
72 |
+
Accuracy results according to 'topk'.
|
73 |
+
"""
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
maxk = max(topk)
|
77 |
+
batch_size = target.size(0)
|
78 |
+
|
79 |
+
_, pred = output.topk(maxk, 1, True, True)
|
80 |
+
pred = pred.t()
|
81 |
+
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
82 |
+
|
83 |
+
res = []
|
84 |
+
for k in topk:
|
85 |
+
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
|
86 |
+
res.append(correct_k.mul_(100.0 / batch_size))
|
87 |
+
return res
|
88 |
+
|
89 |
+
def prepare_data_loader(data_dir: str,
|
90 |
+
batch_size: int = 100,
|
91 |
+
workers: int = 8) -> torch.utils.data.DataLoader:
|
92 |
+
"""Returns a validation data loader of ImageNet by given `data_dir`.
|
93 |
+
Args:
|
94 |
+
data_dir: Directory where images stores. There must be a subdirectory named
|
95 |
+
'validation' that stores the validation set of ImageNet.
|
96 |
+
batch_size: Batch size of data loader.
|
97 |
+
workers: How many subprocesses to use for data loading.
|
98 |
+
Returns:
|
99 |
+
An object of torch.utils.data.DataLoader.
|
100 |
+
"""
|
101 |
+
|
102 |
+
valdir = os.path.join(data_dir, 'validation')
|
103 |
+
|
104 |
+
normalize = transforms.Normalize(
|
105 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
106 |
+
val_dataset = datasets.ImageFolder(
|
107 |
+
valdir,
|
108 |
+
transforms.Compose([
|
109 |
+
transforms.Resize(256, interpolation=InterpolationMode.BICUBIC),
|
110 |
+
transforms.CenterCrop(224),
|
111 |
+
transforms.ToTensor(),
|
112 |
+
normalize,
|
113 |
+
]))
|
114 |
+
|
115 |
+
return torch.utils.data.DataLoader(
|
116 |
+
val_dataset,
|
117 |
+
batch_size=batch_size,
|
118 |
+
shuffle=False,
|
119 |
+
num_workers=workers,
|
120 |
+
pin_memory=True)
|
121 |
+
|
122 |
+
def val_imagenet():
|
123 |
+
"""Validate ONNX model on ImageNet dataset."""
|
124 |
+
print(f'Current onnx model: {args.onnx_model}')
|
125 |
+
|
126 |
+
if args.ipu:
|
127 |
+
providers = ["VitisAIExecutionProvider"]
|
128 |
+
provider_options = [{"config_file": args.provider_config}]
|
129 |
+
else:
|
130 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
131 |
+
provider_options = None
|
132 |
+
ort_session = onnxruntime.InferenceSession(
|
133 |
+
args.onnx_model, providers=providers, provider_options=provider_options)
|
134 |
+
|
135 |
+
val_loader = prepare_data_loader(args.data_dir, args.batch_size)
|
136 |
+
|
137 |
+
top1 = AverageMeter('Acc@1', ':6.2f')
|
138 |
+
top5 = AverageMeter('Acc@5', ':6.2f')
|
139 |
+
|
140 |
+
start_time = time.time()
|
141 |
+
val_loader = tqdm(val_loader, file=sys.stdout)
|
142 |
+
with torch.no_grad():
|
143 |
+
for batch_idx, (images, targets) in enumerate(val_loader):
|
144 |
+
inputs, targets = images.numpy(), targets
|
145 |
+
ort_inputs = {ort_session.get_inputs()[0].name: inputs}
|
146 |
+
|
147 |
+
outputs = ort_session.run(None, ort_inputs)
|
148 |
+
outputs = torch.from_numpy(outputs[0])
|
149 |
+
|
150 |
+
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
|
151 |
+
top1.update(acc1, images.size(0))
|
152 |
+
top5.update(acc5, images.size(0))
|
153 |
+
|
154 |
+
current_time = time.time()
|
155 |
+
print('Test Top1 {:.2f}%\tTop5 {:.2f}%\tTime {:.2f}s\n'.format(
|
156 |
+
float(top1.avg), float(top5.avg), (current_time - start_time)))
|
157 |
+
|
158 |
+
return top1.avg, top5.avg
|
159 |
+
|
160 |
+
if __name__ == '__main__':
|
161 |
+
val_imagenet()
|
mobilenetv2_int8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:370de7c9cd44e725221de3019fa0235c3fef2c0a9c436b5c4bc29eb5564690ca
|
3 |
+
size 24459517
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.12.0
|
2 |
+
torchvision>=0.13.0
|
3 |
+
numpy
|
4 |
+
tqdm
|
5 |
+
#onnxruntime
|