|
""" |
|
WiderFace evaluation code |
|
author: wondervictor |
|
mail: [email protected] |
|
copyright@wondervictor |
|
""" |
|
|
|
import os |
|
import tqdm |
|
import pickle |
|
import argparse |
|
import numpy as np |
|
from scipy.io import loadmat |
|
from bbox import bbox_overlaps |
|
from IPython import embed |
|
|
|
|
|
def get_gt_boxes(gt_dir): |
|
"""gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)""" |
|
|
|
gt_mat = loadmat(os.path.join(gt_dir, "wider_face_val.mat")) |
|
hard_mat = loadmat(os.path.join(gt_dir, "wider_hard_val.mat")) |
|
medium_mat = loadmat(os.path.join(gt_dir, "wider_medium_val.mat")) |
|
easy_mat = loadmat(os.path.join(gt_dir, "wider_easy_val.mat")) |
|
|
|
facebox_list = gt_mat["face_bbx_list"] |
|
event_list = gt_mat["event_list"] |
|
file_list = gt_mat["file_list"] |
|
|
|
hard_gt_list = hard_mat["gt_list"] |
|
medium_gt_list = medium_mat["gt_list"] |
|
easy_gt_list = easy_mat["gt_list"] |
|
|
|
return ( |
|
facebox_list, |
|
event_list, |
|
file_list, |
|
hard_gt_list, |
|
medium_gt_list, |
|
easy_gt_list, |
|
) |
|
|
|
|
|
def get_gt_boxes_from_txt(gt_path, cache_dir): |
|
cache_file = os.path.join(cache_dir, "gt_cache.pkl") |
|
if os.path.exists(cache_file): |
|
f = open(cache_file, "rb") |
|
boxes = pickle.load(f) |
|
f.close() |
|
return boxes |
|
|
|
f = open(gt_path, "r") |
|
state = 0 |
|
lines = f.readlines() |
|
lines = list(map(lambda x: x.rstrip("\r\n"), lines)) |
|
boxes = {} |
|
print(len(lines)) |
|
f.close() |
|
current_boxes = [] |
|
current_name = None |
|
for line in lines: |
|
if state == 0 and "--" in line: |
|
state = 1 |
|
current_name = line |
|
continue |
|
if state == 1: |
|
state = 2 |
|
continue |
|
|
|
if state == 2 and "--" in line: |
|
state = 1 |
|
boxes[current_name] = np.array(current_boxes).astype("float32") |
|
current_name = line |
|
current_boxes = [] |
|
continue |
|
|
|
if state == 2: |
|
box = [float(x) for x in line.split(" ")[:4]] |
|
current_boxes.append(box) |
|
continue |
|
|
|
f = open(cache_file, "wb") |
|
pickle.dump(boxes, f) |
|
f.close() |
|
return boxes |
|
|
|
|
|
def read_pred_file(filepath): |
|
with open(filepath, "r") as f: |
|
lines = f.readlines() |
|
img_file = lines[0].rstrip("\n\r") |
|
lines = lines[2:] |
|
|
|
|
|
|
|
|
|
boxes = [] |
|
for line in lines: |
|
line = line.rstrip("\r\n").split(" ") |
|
if line[0] == "": |
|
continue |
|
|
|
boxes.append( |
|
[ |
|
float(line[0]), |
|
float(line[1]), |
|
float(line[2]), |
|
float(line[3]), |
|
float(line[4]), |
|
] |
|
) |
|
boxes = np.array(boxes) |
|
|
|
return img_file.split("/")[-1], boxes |
|
|
|
|
|
def get_preds(pred_dir): |
|
events = os.listdir(pred_dir) |
|
boxes = dict() |
|
pbar = tqdm.tqdm(events) |
|
|
|
for event in pbar: |
|
pbar.set_description("Reading Predictions ") |
|
event_dir = os.path.join(pred_dir, event) |
|
event_images = os.listdir(event_dir) |
|
current_event = dict() |
|
for imgtxt in event_images: |
|
imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt)) |
|
current_event[imgname.rstrip(".jpg")] = _boxes |
|
boxes[event] = current_event |
|
return boxes |
|
|
|
|
|
def norm_score(pred): |
|
"""norm score |
|
pred {key: [[x1,y1,x2,y2,s]]} |
|
""" |
|
|
|
max_score = 0 |
|
min_score = 1 |
|
|
|
for _, k in pred.items(): |
|
for _, v in k.items(): |
|
if len(v) == 0: |
|
continue |
|
_min = np.min(v[:, -1]) |
|
_max = np.max(v[:, -1]) |
|
max_score = max(_max, max_score) |
|
min_score = min(_min, min_score) |
|
|
|
diff = max_score - min_score |
|
for _, k in pred.items(): |
|
for _, v in k.items(): |
|
if len(v) == 0: |
|
continue |
|
v[:, -1] = (v[:, -1] - min_score) / diff |
|
|
|
|
|
def image_eval(pred, gt, ignore, iou_thresh): |
|
"""single image evaluation |
|
pred: Nx5 |
|
gt: Nx4 |
|
ignore: |
|
""" |
|
|
|
_pred = pred.copy() |
|
_gt = gt.copy() |
|
pred_recall = np.zeros(_pred.shape[0]) |
|
recall_list = np.zeros(_gt.shape[0]) |
|
proposal_list = np.ones(_pred.shape[0]) |
|
|
|
_pred[:, 2] = _pred[:, 2] + _pred[:, 0] |
|
_pred[:, 3] = _pred[:, 3] + _pred[:, 1] |
|
_gt[:, 2] = _gt[:, 2] + _gt[:, 0] |
|
_gt[:, 3] = _gt[:, 3] + _gt[:, 1] |
|
|
|
overlaps = bbox_overlaps(_pred[:, :4], _gt) |
|
|
|
for h in range(_pred.shape[0]): |
|
gt_overlap = overlaps[h] |
|
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax() |
|
if max_overlap >= iou_thresh: |
|
if ignore[max_idx] == 0: |
|
recall_list[max_idx] = -1 |
|
proposal_list[h] = -1 |
|
elif recall_list[max_idx] == 0: |
|
recall_list[max_idx] = 1 |
|
|
|
r_keep_index = np.where(recall_list == 1)[0] |
|
pred_recall[h] = len(r_keep_index) |
|
return pred_recall, proposal_list |
|
|
|
|
|
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall): |
|
pr_info = np.zeros((thresh_num, 2)).astype("float") |
|
for t in range(thresh_num): |
|
thresh = 1 - (t + 1) / thresh_num |
|
r_index = np.where(pred_info[:, 4] >= thresh)[0] |
|
if len(r_index) == 0: |
|
pr_info[t, 0] = 0 |
|
pr_info[t, 1] = 0 |
|
else: |
|
r_index = r_index[-1] |
|
p_index = np.where(proposal_list[: r_index + 1] == 1)[0] |
|
pr_info[t, 0] = len(p_index) |
|
pr_info[t, 1] = pred_recall[r_index] |
|
return pr_info |
|
|
|
|
|
def dataset_pr_info(thresh_num, pr_curve, count_face): |
|
_pr_curve = np.zeros((thresh_num, 2)) |
|
for i in range(thresh_num): |
|
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0] |
|
_pr_curve[i, 1] = pr_curve[i, 1] / count_face |
|
return _pr_curve |
|
|
|
|
|
def voc_ap(rec, prec): |
|
|
|
|
|
mrec = np.concatenate(([0.0], rec, [1.0])) |
|
mpre = np.concatenate(([0.0], prec, [0.0])) |
|
|
|
|
|
for i in range(mpre.size - 1, 0, -1): |
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
|
|
|
|
|
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
|
|
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
return ap |
|
|
|
|
|
def evaluation(pred, gt_path, iou_thresh=0.5): |
|
pred = get_preds(pred) |
|
norm_score(pred) |
|
( |
|
facebox_list, |
|
event_list, |
|
file_list, |
|
hard_gt_list, |
|
medium_gt_list, |
|
easy_gt_list, |
|
) = get_gt_boxes(gt_path) |
|
event_num = len(event_list) |
|
thresh_num = 1000 |
|
settings = ["easy", "medium", "hard"] |
|
setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list] |
|
aps = [] |
|
for setting_id in range(3): |
|
|
|
gt_list = setting_gts[setting_id] |
|
count_face = 0 |
|
pr_curve = np.zeros((thresh_num, 2)).astype("float") |
|
|
|
pbar = tqdm.tqdm(range(event_num)) |
|
for i in pbar: |
|
pbar.set_description("Processing {}".format(settings[setting_id])) |
|
event_name = str(event_list[i][0][0]) |
|
img_list = file_list[i][0] |
|
pred_list = pred[event_name] |
|
sub_gt_list = gt_list[i][0] |
|
|
|
gt_bbx_list = facebox_list[i][0] |
|
|
|
for j in range(len(img_list)): |
|
pred_info = pred_list[str(img_list[j][0][0])] |
|
|
|
gt_boxes = gt_bbx_list[j][0].astype("float") |
|
keep_index = sub_gt_list[j][0] |
|
count_face += len(keep_index) |
|
|
|
if len(gt_boxes) == 0 or len(pred_info) == 0: |
|
continue |
|
ignore = np.zeros(gt_boxes.shape[0]) |
|
if len(keep_index) != 0: |
|
ignore[keep_index - 1] = 1 |
|
pred_recall, proposal_list = image_eval( |
|
pred_info, gt_boxes, ignore, iou_thresh |
|
) |
|
|
|
_img_pr_info = img_pr_info( |
|
thresh_num, pred_info, proposal_list, pred_recall |
|
) |
|
|
|
pr_curve += _img_pr_info |
|
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face) |
|
|
|
propose = pr_curve[:, 0] |
|
recall = pr_curve[:, 1] |
|
|
|
ap = voc_ap(recall, propose) |
|
aps.append(ap) |
|
|
|
print("==================== Results ====================") |
|
print("Easy Val AP: {}".format(aps[0])) |
|
print("Medium Val AP: {}".format(aps[1])) |
|
print("Hard Val AP: {}".format(aps[2])) |
|
print("=================================================") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-p", "--pred", default="./widerface_txt/") |
|
parser.add_argument("-g", "--gt", default="./ground_truth/") |
|
|
|
args = parser.parse_args() |
|
evaluation(args.pred, args.gt) |
|
|