zhengrongzhang's picture
init model
ff1446e
raw
history blame
9.32 kB
"""
WiderFace evaluation code
author: wondervictor
mail: [email protected]
copyright@wondervictor
"""
import os
import tqdm
import pickle
import argparse
import numpy as np
from scipy.io import loadmat
from bbox import bbox_overlaps
from IPython import embed
def get_gt_boxes(gt_dir):
"""gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)"""
gt_mat = loadmat(os.path.join(gt_dir, "wider_face_val.mat"))
hard_mat = loadmat(os.path.join(gt_dir, "wider_hard_val.mat"))
medium_mat = loadmat(os.path.join(gt_dir, "wider_medium_val.mat"))
easy_mat = loadmat(os.path.join(gt_dir, "wider_easy_val.mat"))
facebox_list = gt_mat["face_bbx_list"]
event_list = gt_mat["event_list"]
file_list = gt_mat["file_list"]
hard_gt_list = hard_mat["gt_list"]
medium_gt_list = medium_mat["gt_list"]
easy_gt_list = easy_mat["gt_list"]
return (
facebox_list,
event_list,
file_list,
hard_gt_list,
medium_gt_list,
easy_gt_list,
)
def get_gt_boxes_from_txt(gt_path, cache_dir):
cache_file = os.path.join(cache_dir, "gt_cache.pkl")
if os.path.exists(cache_file):
f = open(cache_file, "rb")
boxes = pickle.load(f)
f.close()
return boxes
f = open(gt_path, "r")
state = 0
lines = f.readlines()
lines = list(map(lambda x: x.rstrip("\r\n"), lines))
boxes = {}
print(len(lines))
f.close()
current_boxes = []
current_name = None
for line in lines:
if state == 0 and "--" in line:
state = 1
current_name = line
continue
if state == 1:
state = 2
continue
if state == 2 and "--" in line:
state = 1
boxes[current_name] = np.array(current_boxes).astype("float32")
current_name = line
current_boxes = []
continue
if state == 2:
box = [float(x) for x in line.split(" ")[:4]]
current_boxes.append(box)
continue
f = open(cache_file, "wb")
pickle.dump(boxes, f)
f.close()
return boxes
def read_pred_file(filepath):
with open(filepath, "r") as f:
lines = f.readlines()
img_file = lines[0].rstrip("\n\r")
lines = lines[2:]
# b = lines[0].rstrip('\r\n').split(' ')[:-1]
# c = float(b)
# a = map(lambda x: [[float(a[0]), float(a[1]), float(a[2]), float(a[3]), float(a[4])] for a in x.rstrip('\r\n').split(' ')], lines)
boxes = []
for line in lines:
line = line.rstrip("\r\n").split(" ")
if line[0] == "":
continue
# a = float(line[4])
boxes.append(
[
float(line[0]),
float(line[1]),
float(line[2]),
float(line[3]),
float(line[4]),
]
)
boxes = np.array(boxes)
# boxes = np.array(list(map(lambda x: [float(a) for a in x.rstrip('\r\n').split(' ')], lines))).astype('float')
return img_file.split("/")[-1], boxes
def get_preds(pred_dir):
events = os.listdir(pred_dir)
boxes = dict()
pbar = tqdm.tqdm(events)
for event in pbar:
pbar.set_description("Reading Predictions ")
event_dir = os.path.join(pred_dir, event)
event_images = os.listdir(event_dir)
current_event = dict()
for imgtxt in event_images:
imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt))
current_event[imgname.rstrip(".jpg")] = _boxes
boxes[event] = current_event
return boxes
def norm_score(pred):
"""norm score
pred {key: [[x1,y1,x2,y2,s]]}
"""
max_score = 0
min_score = 1
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
_min = np.min(v[:, -1])
_max = np.max(v[:, -1])
max_score = max(_max, max_score)
min_score = min(_min, min_score)
diff = max_score - min_score
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
v[:, -1] = (v[:, -1] - min_score) / diff
def image_eval(pred, gt, ignore, iou_thresh):
"""single image evaluation
pred: Nx5
gt: Nx4
ignore:
"""
_pred = pred.copy()
_gt = gt.copy()
pred_recall = np.zeros(_pred.shape[0])
recall_list = np.zeros(_gt.shape[0])
proposal_list = np.ones(_pred.shape[0])
_pred[:, 2] = _pred[:, 2] + _pred[:, 0]
_pred[:, 3] = _pred[:, 3] + _pred[:, 1]
_gt[:, 2] = _gt[:, 2] + _gt[:, 0]
_gt[:, 3] = _gt[:, 3] + _gt[:, 1]
overlaps = bbox_overlaps(_pred[:, :4], _gt)
for h in range(_pred.shape[0]):
gt_overlap = overlaps[h]
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax()
if max_overlap >= iou_thresh:
if ignore[max_idx] == 0:
recall_list[max_idx] = -1
proposal_list[h] = -1
elif recall_list[max_idx] == 0:
recall_list[max_idx] = 1
r_keep_index = np.where(recall_list == 1)[0]
pred_recall[h] = len(r_keep_index)
return pred_recall, proposal_list
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall):
pr_info = np.zeros((thresh_num, 2)).astype("float")
for t in range(thresh_num):
thresh = 1 - (t + 1) / thresh_num
r_index = np.where(pred_info[:, 4] >= thresh)[0]
if len(r_index) == 0:
pr_info[t, 0] = 0
pr_info[t, 1] = 0
else:
r_index = r_index[-1]
p_index = np.where(proposal_list[: r_index + 1] == 1)[0]
pr_info[t, 0] = len(p_index)
pr_info[t, 1] = pred_recall[r_index]
return pr_info
def dataset_pr_info(thresh_num, pr_curve, count_face):
_pr_curve = np.zeros((thresh_num, 2))
for i in range(thresh_num):
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0]
_pr_curve[i, 1] = pr_curve[i, 1] / count_face
return _pr_curve
def voc_ap(rec, prec):
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.0], rec, [1.0]))
mpre = np.concatenate(([0.0], prec, [0.0]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def evaluation(pred, gt_path, iou_thresh=0.5):
pred = get_preds(pred)
norm_score(pred)
(
facebox_list,
event_list,
file_list,
hard_gt_list,
medium_gt_list,
easy_gt_list,
) = get_gt_boxes(gt_path)
event_num = len(event_list)
thresh_num = 1000
settings = ["easy", "medium", "hard"]
setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list]
aps = []
for setting_id in range(3):
# different setting
gt_list = setting_gts[setting_id]
count_face = 0
pr_curve = np.zeros((thresh_num, 2)).astype("float")
# [hard, medium, easy]
pbar = tqdm.tqdm(range(event_num))
for i in pbar:
pbar.set_description("Processing {}".format(settings[setting_id]))
event_name = str(event_list[i][0][0])
img_list = file_list[i][0]
pred_list = pred[event_name]
sub_gt_list = gt_list[i][0]
# img_pr_info_list = np.zeros((len(img_list), thresh_num, 2))
gt_bbx_list = facebox_list[i][0]
for j in range(len(img_list)):
pred_info = pred_list[str(img_list[j][0][0])]
gt_boxes = gt_bbx_list[j][0].astype("float")
keep_index = sub_gt_list[j][0]
count_face += len(keep_index)
if len(gt_boxes) == 0 or len(pred_info) == 0:
continue
ignore = np.zeros(gt_boxes.shape[0])
if len(keep_index) != 0:
ignore[keep_index - 1] = 1
pred_recall, proposal_list = image_eval(
pred_info, gt_boxes, ignore, iou_thresh
)
_img_pr_info = img_pr_info(
thresh_num, pred_info, proposal_list, pred_recall
)
pr_curve += _img_pr_info
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face)
propose = pr_curve[:, 0]
recall = pr_curve[:, 1]
ap = voc_ap(recall, propose)
aps.append(ap)
print("==================== Results ====================")
print("Easy Val AP: {}".format(aps[0]))
print("Medium Val AP: {}".format(aps[1]))
print("Hard Val AP: {}".format(aps[2]))
print("=================================================")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--pred", default="./widerface_txt/")
parser.add_argument("-g", "--gt", default="./ground_truth/")
args = parser.parse_args()
evaluation(args.pred, args.gt)