yolov8m / eval_onnx.py
zhengrongzhang's picture
update for regression test (#5)
e0810ef verified
import json
from pathlib import Path
import torch
import argparse
import numpy as np
from tqdm import tqdm
import onnxruntime
from utils import check_det_dataset, yaml_load, IterableSimpleNamespace, build_dataloader, post_process, xyxy2xywh, LOGGER, \
DetMetrics, increment_path, get_cfg, smart_inference_mode, box_iou, TQDM_BAR_FORMAT, scale_boxes, non_max_suppression, xywh2xyxy
# Default configuration
DEFAULT_CFG_DICT = yaml_load("./default.yaml")
for k, v in DEFAULT_CFG_DICT.items():
if isinstance(v, str) and v.lower() == 'none':
DEFAULT_CFG_DICT[k] = None
DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys()
DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT)
import sys
import pathlib
CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))
class DetectionValidator:
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.pbar = pbar
self.logger = LOGGER
self.args = args
self.model = None
self.data = None
self.device = None
self.batch_i = None
self.speed = None
self.jdict = None
self.args.task = 'detect'
project = Path("./runs") / self.args.task
self.save_dir = save_dir or increment_path(Path(project),
exist_ok=True)
(self.save_dir / 'labels').mkdir(parents=True, exist_ok=True)
self.args.conf = 0.001 # default conf=0.001
self.is_coco = False
self.class_map = None
self.metrics = DetMetrics(save_dir=self.save_dir)
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for [email protected]:0.95
self.niou = self.iouv.numel()
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.device = torch.device('cpu')
onnx_weight = self.args.onnx_weight
if isinstance(onnx_weight, list):
onnx_weight = onnx_weight[0]
if self.args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": self.args.provider_config}]
onnx_model = onnxruntime.InferenceSession(onnx_weight, providers=providers, provider_options=provider_options)
else:
onnx_model = onnxruntime.InferenceSession(onnx_weight)
self.data = check_det_dataset(self.args.data)
self.args.rect = False
self.dataloader = self.dataloader or self.get_dataloader(self.data.get("val") or self.data.get("test"), self.args.batch)
total = len(self.dataloader)
n_batches = len(self.dataloader)
desc = self.get_desc()
bar = tqdm(self.dataloader, desc, total, bar_format=TQDM_BAR_FORMAT)
self.init_metrics()
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
batch = self.preprocess(batch)
# inference
# outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: batch["img"].cpu().numpy()})
outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: batch["img"].permute(0, 2, 3, 1).cpu().numpy()})
# outputs = [torch.tensor(item).to(self.device) for item in outputs]
outputs = [torch.tensor(item).permute(0, 3, 1, 2).to(self.device) for item in outputs]
preds = post_process(outputs)
# pre-process predictions
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
stats = self.get_stats()
self.print_results()
if self.args.save_json and self.jdict:
with open(str(self.save_dir / "predictions.json"), 'w') as f:
self.logger.info(f"Saving {f.name}...")
json.dump(self.jdict, f) # flatten and save
stats = self.eval_json(stats) # update stats
return stats
def get_dataloader(self, dataset_path, batch_size):
# calculate stride - check if model is initialized
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=32, names=self.data['names'], mode="val")[0]
def get_desc(self):
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)")
def init_metrics(self):
self.is_coco = True
self.class_map = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
self.args.save_json = True
self.nc = 80
classnames = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
self.names = {k: classnames[k] for k in range(80)}
self.metrics.names = self.names
self.metrics.plot = True
self.seen = 0
self.jdict = []
self.stats = []
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = batch["img"].float() / 255
for k in ["batch_idx", "cls", "bboxes"]:
batch[k] = batch[k].to(self.device)
nb = len(batch["img"])
self.lb = [torch.cat([batch["cls"], batch["bboxes"]], dim=-1)[batch["batch_idx"] == i]
for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling
return batch
def postprocess(self, preds):
preds = non_max_suppression(preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det)
return preds
def update_metrics(self, preds, batch):
# Metrics
for si, pred in enumerate(preds):
idx = batch["batch_idx"] == si
cls = batch["cls"][idx]
bbox = batch["bboxes"][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch["ori_shape"][si]
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch["ratio_pad"][si]) # native-space pred
# Evaluate
if nl:
height, width = batch["img"].shape[2:]
tbox = xywh2xyxy(bbox) * torch.tensor(
(width, height, width, height), device=self.device) # target boxes
scale_boxes(batch["img"][si].shape[1:], tbox, shape,
ratio_pad=batch["ratio_pad"][si]) # native-space labels
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn)
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
# Save
if self.args.save_json:
self.pred_to_json(predn, batch["im_file"][si])
def _process_batch(self, detections, labels):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def pred_to_json(self, predn, filename):
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
self.metrics.process(*stats)
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
return self.metrics.results_dict
def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0:
self.logger.warning(
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
# Print results per class
if self.args.verbose and self.nc > 1 and len(self.stats):
for i, c in enumerate(self.metrics.ap_class_index):
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
def eval_json(self, stats):
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = Path(self.data['path']) / 'annotations/instances_val2017.json' # annotations
pred_json = self.save_dir / "predictions.json" # predictions
self.logger.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
# for x in anno_json, pred_json:
# assert x.is_file(), f"{x} file not found"
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
eval = COCOeval(anno, pred, 'bbox')
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
self.logger.warning(f'pycocotools unable to run: {e}')
return stats
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--ipu', action='store_true', help='flag for ryzen ai')
parser.add_argument('--provider_config', default='', type=str, help='provider config for ryzen ai')
parser.add_argument("-m", "--onnx_model", default="./yolov8m.onnx", type=str, help='onnx_weight')
opt = parser.parse_args()
return opt
if __name__ == "__main__":
opt = parse_opt()
args = get_cfg(DEFAULT_CFG)
args.ipu = opt.ipu
args.onnx_weight = opt.onnx_model
args.provider_config = opt.provider_config
validator = DetectionValidator(args=args)
validator()