File size: 858 Bytes
6931c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch.nn as nn
import numpy as np

class BaseModel(nn.Module):
    """
    Base class for all models
    """

    def __init__(self):
        super(BaseModel, self).__init__()
        # self.logger = logging.getLogger(self.__class__.__name__)

    def forward(self, *x):
        """
        Forward pass logic

        :return: Model output
        """
        raise NotImplementedError

    def summary(self, logger, writer):
        """
        Model summary
        """
        model_parameters = filter(lambda p: p.requires_grad, self.parameters())
        params = sum([np.prod(p.size()) for p in model_parameters]) / 1e6  # Unit is Mega
        logger.info(self)
        logger.info('===>Trainable parameters: %.3f M' % params)
        if writer is not None:
            writer.add_text('Model Summary', 'Trainable parameters: %.3f M' % params)