File size: 9,271 Bytes
6931c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Copyright (c) Meta Platforms, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import pdb
import time
import dlib
import torch
import logging
import numpy as np
from ffmpy import FFmpeg
from pathlib import Path
from scipy.io import wavfile
from collections import OrderedDict, defaultdict
import math
from utils import (
load_meanface_metadata,
download_extract_file_if_not,
)
from fairseq import utils, checkpoint_utils
from fairseq.dataclass.configs import GenerationConfig
logger = logging.getLogger(__name__)
TIME_TRACKER = OrderedDict() # to track time-taken per step
MAX_MISSING_FRAMES_RATIO = 0.75 #max video frames that is ok to be missing
USE_CUDA = torch.cuda.is_available()
def load_noise_samples(noise_path):
# download_extract_file_if_not(
# url="https://dl.fbaipublicfiles.com/muavic/noise_samples.tgz",
# compressed_filepath= (noise_path/"noise_samples.tgz"),
# download_filename="noise_samples"
# )
noise_dict = defaultdict(list)
for wav_filepath in (noise_path).rglob('*.wav'):
category = wav_filepath.parent.stem
noise_dict[category].append(str(wav_filepath))
return noise_dict
def load_av_models(av_models_path):
av_resources = defaultdict(dict)
# Load AV-HuBERT Models
for parent_path in sorted(av_models_path.glob("*")): # SORT THEM
if parent_path.is_file(): continue # parent_path has to be a directory
# prepare needed variables
key = parent_path.stem
lang_label = key.split('_')[0].split('-')[-1]
label_path = str(parent_path)
ckpt_path = str(parent_path / "checkpoint_best.pt")
# load av model
arg_overrides = {
"modalities": ["audio", "video"],
"data": label_path,
"labels": [lang_label],
"label_dir": label_path,
"tokenizer_bpe_model": f"{label_path}/tokenizer.model",
"noise_prob": 0,
"noise_wav": None,
}
models, _, task = checkpoint_utils.load_model_ensemble_and_task(
[ckpt_path], arg_overrides
)
models = [
model.eval().cuda() if USE_CUDA else model.eval()
for model in models
]
generator = task.build_generator(models, GenerationConfig(beam=1))
# save info
av_resources[key]["model"] = models
av_resources[key]["task"] = task
av_resources[key]["generator"] = generator
del models, task, generator
return av_resources
def add_noise(signal, noise, snr):
"""
signal: 1D tensor in [-32768, 32767] (16-bit depth)
noise: 1D tensor in [-32768, 32767] (16-bit depth)
snr: tuple or float
"""
signal = signal.astype(np.float32)
noise = noise.astype(np.float32)
if type(snr) == tuple:
assert len(snr) == 2
snr = np.random.uniform(snr[0], snr[1])
else:
snr = float(snr)
if len(signal) > len(noise):
ratio = int(np.ceil(len(signal) / len(noise)))
noise = np.concatenate([noise for _ in range(ratio)])
if len(signal) < len(noise):
start = 0
noise = noise[start : start + len(signal)]
amp_s = np.sqrt(np.mean(np.square(signal), axis=-1))
amp_n = np.sqrt(np.mean(np.square(noise), axis=-1))
noise = noise * (amp_s / amp_n) / (10 ** (snr / 20))
mixed = signal + noise
# Avoid clipping noise
max_int16 = np.iinfo(np.int16).max
min_int16 = np.iinfo(np.int16).min
if mixed.max(axis=0) > max_int16 or mixed.min(axis=0) < min_int16:
if mixed.max(axis=0) >= abs(mixed.min(axis=0)):
reduction_rate = max_int16 / mixed.max(axis=0)
else:
reduction_rate = min_int16 / mixed.min(axis=0)
mixed = mixed * (reduction_rate)
mixed = mixed.astype(np.int16)
return mixed
def linear_interpolate(landmarks, start_idx, stop_idx):
start_landmarks = landmarks[start_idx]
stop_landmarks = landmarks[stop_idx]
delta = stop_landmarks - start_landmarks
for idx in range(1, stop_idx - start_idx):
landmarks[start_idx + idx] = (
start_landmarks + idx / float(stop_idx - start_idx) * delta
)
return landmarks
def landmarks_interpolate(landmarks):
"""Interpolate landmarks
param list landmarks: landmarks detected in raw videos
"""
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None ]
if not valid_frames_idx:
return None
for idx in range(1, len(valid_frames_idx)):
if valid_frames_idx[idx] - valid_frames_idx[idx - 1] == 1:
continue
else:
landmarks = linear_interpolate(
landmarks, valid_frames_idx[idx - 1], valid_frames_idx[idx]
)
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
# -- Corner case: keep frames at the beginning or at the end failed to be detected.
if valid_frames_idx:
landmarks[: valid_frames_idx[0]] = [
landmarks[valid_frames_idx[0]]
] * valid_frames_idx[0]
landmarks[valid_frames_idx[-1] :] = [landmarks[valid_frames_idx[-1]]] * (
len(landmarks) - valid_frames_idx[-1]
)
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
assert len(valid_frames_idx) == len(landmarks), "not every frame has landmark"
return landmarks
def track_time(func):
def wrap_func(*args, **kwargs):
t1 = time.time()
result = func(*args, **kwargs)
t2 = time.time()
TIME_TRACKER[f"{func.__name__!r}"] = round(t2-t1, 2)
return result
return wrap_func
def load_needed_models_for_lip_movement(metadata_path):
metadata_path.mkdir(parents=True, exist_ok=True)
# load dlib's face detector (NOTE: can be replaced by any other model)
logger.debug("Loading frontal face detector!")
detector = dlib.get_frontal_face_detector()
# load landmark predictor
logger.debug("Loading shape predictor!")
filename = "shape_predictor_68_face_landmarks.dat"
# download_extract_file_if_not(
# url=f"http://dlib.net/files/{filename}.bz2",
# compressed_filepath=metadata_path/f"{filename}.bz2",
# download_filename=filename
# )
shape_predictor_path = metadata_path / filename
predictor = dlib.shape_predictor(str(shape_predictor_path))
# load metadata
logger.debug("Loading mean-face metadata!")
mean_face_landmarks = load_meanface_metadata(metadata_path)
return (
detector, predictor, mean_face_landmarks
)
@track_time
def mix_audio_with_noise(webcam_video, audio_file, out_file, noise_wav_file, snr):
# get audio from webcam video
FFmpeg(
inputs={webcam_video: None},
outputs={audio_file: "-v quiet -vn -acodec pcm_s16le -ar 16000 -ac 1"},
).run()
# read audio WAV file
sr, audio = wavfile.read(audio_file)
# read noise WAV file
logger.debug(f"Noise Wav used is {noise_wav_file}")
_, noise_wav = wavfile.read(noise_wav_file)
# mix audio + noise
mixed = add_noise(audio, noise_wav, snr)
# save resulting noisy audio WAV file
wavfile.write(out_file, sr, mixed)
return mixed
@track_time
def infer_av_hubert(
av_models,
av_task,
av_generator,
vid_filepath,
audio_filepath,
duration
):
def decode_fn(x, av_task, gen, gen_subset_name):
dictionary = av_task.target_dictionary
symbols_ignore = gen.symbols_to_strip_from_output
symbols_ignore.add(dictionary.pad())
return av_task.datasets[gen_subset_name].label_processors[0].decode(
x, symbols_ignore
)
logger.debug("Preparing manifest & label files.")
gen_subset = "test"
av_label_path = av_task.cfg.label_dir
av_label_ext = av_task.cfg.labels[0]
manifest_filepath = Path(av_label_path) / f"{gen_subset}.tsv"
a_frames = int(duration * 16000) # NOTE: 16000 is the audio sample rate
v_frames = int(25 * duration) #NOTE: 25 is the video framerate per second
with open(manifest_filepath, "w") as fout:
fout.write("/\n")
fout.write(
f"id\t{vid_filepath}\t{audio_filepath}\t{v_frames}\t{a_frames}\n"
)
label_filepath = f"{av_label_path}/{gen_subset}.{av_label_ext}"
with open(label_filepath, "w") as fo:
fo.write("[PLACEHOLDER]\n")
logger.debug(f"Manifest filepath: {manifest_filepath}")
logger.debug(f"Label filepath: {label_filepath}")
av_task.load_dataset(gen_subset, task_cfg=av_task.cfg)
itr = av_task.get_batch_iterator(
dataset=av_task.dataset(gen_subset)
).next_epoch_itr(shuffle=False)
sample = next(itr)
if USE_CUDA: sample = utils.move_to_cuda(sample)
hypos = av_task.inference_step(av_generator, av_models, sample)
# ref = decode_fn(sample['target'][0].int().cpu())
hypo = hypos[0][0]['tokens'].int().cpu()
hypo = decode_fn(hypo, av_task, av_generator, gen_subset)
# clear un-needed files
#os.remove(label_filepath)
#os.remove(manifest_filepath)
logger.debug("Done cleaning un-needed files")
return hypo
|