File size: 20,645 Bytes
6931c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
# Copyright (c) Meta Platforms, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import cv2
import sys
import time
import random
import shutil
import hashlib
import logging
import argparse
#import gradio as gr
from tqdm import tqdm
from pathlib import Path
from ffmpy import FFmpeg
import glob
import pdb
import torchaudio
import random
import torch
import numpy as np
from scipy.io import wavfile
from jiwer import wer, cer
import json
from faster_whisper import WhisperModel
import shutil
random_seed=1234
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
sys.path.insert(0, str(Path(__file__).parent.parent))
from demo_utils import *sh scripts/demo.sh multi
from utils import (
split_video_to_frames,
resize_frames,
crop_patch,
save_video,
)
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
def detect_landmark(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
rects = DETECTOR(gray, 1)
coords = None
for (_, rect) in enumerate(rects):
shape = PREDICTOR(gray, rect)
coords = np.zeros((68, 2), dtype=np.int32)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
@track_time
def extract_lip_movement(
webcam_video,
in_video_filepath,
out_lip_filepath,
num_workers
):
def copy_video_if_ready(webcam_video, out_path):
with open(webcam_video, 'rb') as fin:
curr_md5hash = hashlib.md5(fin.read()).hexdigest()
# check if the current hash matches anything in the cache
if curr_md5hash in VIDEOS_CACHE:
dst_path = VIDEOS_CACHE[curr_md5hash]
# copy needed files
shutil.copy(dst_path / "video.mp4", out_path)
shutil.copy(dst_path / "lip_movement.mp4", out_path)
shutil.copy(dst_path / "raw_video.md5", out_path)
return True
else:
VIDEOS_CACHE[curr_md5hash] = out_path
with open(out_path / "raw_video.md5", 'w') as fout:
fout.write(curr_md5hash)
return False
'''
if copy_video_if_ready(webcam_video, in_video_filepath.parent):
logger.info("Skip video processing; Loading the cached one!!")
return
'''
# change video framerate to 25 and lower resolution for faster processing
logger.info("Adjust video framerate to 25")
if not os.path.isfile(in_video_filepath):
FFmpeg(
inputs={webcam_video: None},
outputs={in_video_filepath: "-v quiet -filter:v fps=fps=25 -vf scale=640:480"},
).run()
# convert video to a list of frames
logger.info("Converting video into frames")
frames = list(split_video_to_frames(in_video_filepath))
# Get face landmarks from video
logger.info("Extract face landmarks from video frames")
landmarks = [
detect_landmark(frame)
for frame in tqdm(frames, desc="Detecting Lip Movement")
]
# landmarks = process_map(
# detect_landmark,
# frames,
# max_workers=num_workers,
# desc="Detecting Lip Movement"
# )
invalid_landmarks_ratio = sum(lnd is None for lnd in landmarks) / len(landmarks)
logger.info(f"Current invalid frame ratio ({invalid_landmarks_ratio}) ")
if invalid_landmarks_ratio > MAX_MISSING_FRAMES_RATIO:
logging.info(
"Invalid frame ratio exceeded maximum allowed ratio!! " +
"Starting resizing the recorded video!!"
)
sequence = resize_frames(frames)
else:
# interpolate frames not being detected (if found).
if invalid_landmarks_ratio != 0:
logger.info("Linearly-interpolate invalid landmarks")
continuous_landmarks = landmarks_interpolate(landmarks)
else:
continuous_landmarks = landmarks
# crop mouth regions
logger.info("Cropping the mouth region.")
sequence = crop_patch(
frames,
len(frames),
continuous_landmarks,
MEAN_FACE_LANDMARKS,
)
# return lip-movement frames
save_video(sequence, out_lip_filepath, fps=25)
def process_input_video(
model_type: str,
input_video_path: str,
noise_snr: int,
noise_type: str,
outpath: str,
):
if input_video_path is None:
raise IOError(
"Gradio didn't record the video. Refresh the web page, please!!"
)
audio_filepath = outpath / "audio.wav"
video_filepath = outpath / "video.mp4"
noisy_audio_filepath = outpath / "noisy_audio.wav"
lip_video_filepath = outpath / "lip_movement.mp4"
if not os.path.isfile(video_filepath) and not os.path.isfile(lip_video_filepath):
# start the lip movement preprocessing pipeline
extract_lip_movement(
input_video_path, video_filepath, lip_video_filepath,
num_workers=min(os.cpu_count(), 5)
)
# mix audio with noise
logger.info(f"Mixing audio with `{noise_type}` noise (SNR={noise_snr}).")
noise_wav_files = NOISE[noise_type]
noise_wav_file = noise_wav_files[random.randint(0, len(noise_wav_files) - 1)]
logger.debug(f"Noise Wav used is {noise_wav_file}")
mixed = mix_audio_with_noise(
input_video_path, audio_filepath, noisy_audio_filepath,
noise_wav_file, noise_snr
)
# combine (audio+noise) with lip-movement
logger.info("Adding noisy audio with the lip-movement video.")
noisy_lip_filepath = outpath / "noisy_lip_movement.mp4"
FFmpeg(
inputs={noisy_audio_filepath: None, lip_video_filepath: None},
outputs={noisy_lip_filepath: "-v quiet -c:v copy -c:a aac"},
).run()
# Infer Audio-Video using Av-HuBERT
av_text = infer_av_hubert(
AV_RESOURCES[model_type]["model"],
AV_RESOURCES[model_type]["task"],
AV_RESOURCES[model_type]["generator"],
lip_video_filepath,
noisy_audio_filepath,
duration=len(mixed) / 16000
)
logger.info(f"Av-HuBERT Output: {av_text}")
logger.info("Summary:")
for k, v in TIME_TRACKER.items():
logger.info(f'Function {k} executed in {v} seconds')
logger.info(30 * '=' + " Done! " + '=' * 30)
return (str(noisy_lip_filepath), av_text)
def test_WER(
model_type: str,
input_video_path: str,
gt_text: str,
noise_type: str,
model_name: str,
noise_name : str,
noise_wav_file : str,
outpath: str,
file_name: str,
is_valid: dict,
):
if input_video_path is None:
raise IOError(
"Gradio didn't record the video. Refresh the web page, please!!"
)
out_filepath = outpath / model_name/file_name
out_filepath.mkdir(parents=True, exist_ok=True)
audio_filepath = out_filepath/ "audio.wav"
video_filepath = out_filepath/ "video.mp4"
noisy_audio_path = outpath / model_name / noise_type / noise_name
noisy_audio_path.mkdir(parents=True, exist_ok=True)
#noisy_audio_filepath = noisy_audio_path / "noisy_audio.wav"
lip_video_filepath = out_filepath / "lip_movement.mp4"
if not os.path.isfile(lip_video_filepath):
# start the lip movement preprocessing pipeline
extract_lip_movement(
input_video_path, video_filepath, lip_video_filepath,
num_workers=min(os.cpu_count(), 5)
)
#noise_wav_files = NOISE[noise_type]
#noise_wav_file = noise_wav_files[random.randint(0, len(noise_wav_files) - 1)]
# mix audio with noise
if not os.path.isfile(audio_filepath):
FFmpeg(
inputs={input_video_path: None},
outputs={audio_filepath: "-v quiet -vn -acodec pcm_s16le -ar 16000 -ac 1"},
).run()
sr, audio = wavfile.read(audio_filepath)
_, noise = wavfile.read(noise_wav_file)
# noise = np.random.normal(0, 1, audio.shape[0])
wer_temp = []
cer_temp = []
'''
## original wer and edit distance
origin_av_text = infer_av_hubert(
AV_RESOURCES[model_type]["model"],
AV_RESOURCES[model_type]["task"],
AV_RESOURCES[model_type]["generator"],
lip_video_filepath,
audio_filepath,
duration=len(audio) / 16000
)
word_error_rate = wer(gt_text.lower().replace('\n', ''), origin_av_text.lower().replace('\n', ''))
character_error_rate = cer(gt_text.lower().replace('\n', ''), origin_av_text.lower().replace('\n', ''))
wer_temp.append(word_error_rate)
cer_temp.append(character_error_rate)
'''
for ns in [-7.5, -10]:
#sr, audio = wavfile.read(audio_filepath)
snr_name = "snr_"+ str(ns)
noisy_audio_ns_path = noisy_audio_path / snr_name / file_name
noisy_audio_ns_path.mkdir(parents=True, exist_ok=True)
noisy_audio_ns_filepath = noisy_audio_ns_path / "noisy_audio.wav"
mixed = add_noise(audio, noise, ns)
if not os.path.isfile(noisy_audio_ns_filepath):
wavfile.write(noisy_audio_ns_filepath, sr, mixed)
# combine (audio+noise) with lip-movement
noisy_lip_filepath = noisy_audio_ns_path / "noisy_lip_movement.mp4"
if not os.path.isfile(noisy_lip_filepath):
FFmpeg(
inputs={noisy_audio_ns_filepath: None, lip_video_filepath: None},
outputs={noisy_lip_filepath: "-v quiet -c:v copy -c:a aac"},
).run()
# Infer Audio-Video using Av-HuBERT
av_text = infer_av_hubert(
AV_RESOURCES[model_type]["model"],
AV_RESOURCES[model_type]["task"],
AV_RESOURCES[model_type]["generator"],
lip_video_filepath,
noisy_audio_ns_filepath,
duration=len(mixed) / 16000
)
av_text = av_text.replace('.','').replace(',','').replace('!','').replace(';','').replace(':','').replace('?','').replace('/','').lower().replace('\n', '').strip()
gt_text = gt_text.replace('.','').replace(',','').replace('!','').replace(';','').replace(':','').replace('?','').replace('/','').lower().replace('\n', '').strip()
word_error_rate = wer(gt_text, av_text)
character_error_rate = cer(gt_text, av_text)
print(f"av_text : {av_text}")
print(f"gt_text : {gt_text}")
'''
if sum(is_valid.values())>=51 and word_error_rate >= 1.0 and ns == -7.5 and (model_name in ["MultiTalk"]):
is_valid[file_name] = 0
'''
print(
f"file_name : {file_name}, snr: {str(ns)}, word_error_rate : {word_error_rate}, character_error_rate : {character_error_rate}, is_valid[file_name] : {is_valid[file_name]}")
wer_temp.append(word_error_rate)
cer_temp.append(character_error_rate)
shutil.rmtree(noisy_audio_ns_path)
return wer_temp, cer_temp, is_valid
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--avhubert-path", type=Path, required=False, default="./av_hubert/avhubert",
help="Relative/Absolute path where avhubert repo is located."
)
parser.add_argument(
"--work-dir", type=Path, required=True,
default="/local_data_2/chaeyeon/interspeech2024/avlr",
help="work directory for avlr evaluation"
)
parser.add_argument(
"--language", type=str, required=True,
default="English",
help="evaluation language"
)
parser.add_argument(
"--model-name", type=str, required=True,
default="all",
help="model name"
)
parser.add_argument(
"--exp-name", type=str, required=True,
default="base",
help="experiment name"
)
args = parser.parse_args()
# start loading resources
logger.info("Loading noise samples..")
start_time = time.time()
work_path = args.work_dir / args.language
input_path = work_path / "inputs"
output_path = work_path / "outputs"
lang_map = {'Arabic': 'ar', 'English': 'en', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Spanish': 'es',
'French': 'fr', 'Greek': 'el', 'Russian': 'ru'}
checkpoint_path = work_path / "checkpoints"
av_model_path = os.path.join(checkpoint_path , lang_map[args.language]+"_avsr")
output_path.mkdir(parents=True, exist_ok=True)
noise_path = args.work_dir / "noise_samples"
NOISE = load_noise_samples(noise_path)
logger.info("Loading AV models!")
if not checkpoint_path.exists():
raise ValueError(
f"av-models-path: `{checkpoint_path}` doesn't exist!!"
)
utils.import_user_module(
argparse.Namespace(user_dir=str(args.avhubert_path))
)
AV_RESOURCES = load_av_models(checkpoint_path)
logger.info("Loading models responsible for preprocessing!")
metadata_path = args.work_dir / "metadata"
DETECTOR, PREDICTOR, MEAN_FACE_LANDMARKS = (
load_needed_models_for_lip_movement(metadata_path)
)
logger.info("Done loading!")
# cache already recorded videos
VIDEOS_CACHE = {}
logger.info("Caching previously recorded videos!")
for hash_path in output_path.rglob("*.md5"):
with open(hash_path) as fin:
md5hash = fin.read()
VIDEOS_CACHE[md5hash] = hash_path.parent
# define input interfaces
if args.model_name == "all":
model_names = ["MultiTalk", "VOCA", "FaceFormer", "CodeTalker"]
#model_names = ["MultiTalk", "FaceFormer"]
#model_names = ["ours", "codetalker_mean", "faceformer_mean", "codetalker_id", "faceformer_id"]
else:
model_names = [args.model_name]
wav_path = input_path / "wav"
# Run on GPU with FP16
model = WhisperModel("large-v3", device="cpu", compute_type="int8")
wer_path = work_path / f'wer_{args.exp_name}.json'
cer_path = work_path / f'cer_{args.exp_name}.json'
is_valid_path = work_path / f'is_valid_{args.exp_name}.json'
noise_types = ["indoors", "indoors", "music"] # [indoors, music, park, party, traffic]
noise_names = ["dog-playing", "kids-playing", "leave_it_to_the_experts"]
snr_values = ['-7.5', '-10']
total_word_error_rate = {}
total_character_error_rate = {}
wer_results = {}
cer_results = {}
video_path = input_path / model_names[0]
video_lists = glob.glob(os.path.join(video_path, "*.mp4"))
sorted_video_lists = sorted(video_lists)
text_path = input_path / "text"
text_path.mkdir(parents=True, exist_ok=True)
text_lists = glob.glob(os.path.join(text_path, "*.txt"))
if len(text_lists) != len(video_lists):
for vid in sorted_video_lists:
file_name = vid.split("/")[-1].split(".")[0]
# gt text
wav_file = os.path.join(wav_path, file_name + ".wav")
segments, info = model.transcribe(audio=wav_file, language=lang_map[args.language],
beam_size=5)
text = ''
for segment in segments:
text = text + segment.text
text_file = os.path.join(text_path, file_name + ".txt")
with open(text_file, 'w') as f:
f.write(text.replace('.','').replace(',','').replace('!','').replace(';','').replace(':','').replace('?','').strip())
f.close()
start_eval = time.time()
print(f"Pseudo gt text made in {start_eval - start_time} secs.")
#is_valid = {}
if args.language in ['Greek', 'Italian']:
is_valid_path = work_path / f'is_valid_base_wo_self.json'
elif args.language in ['English', 'French', 'German']:
is_valid_path = work_path / f'is_valid_base.json'
with open(is_valid_path, 'r') as f:
is_valid = json.load(f)
f.close()
'''
for vid in sorted_video_lists :
file_name = vid.split("/")[-1].split(".")[0]
is_valid[file_name] = 1
'''
for model_name in model_names:
total_word_error_rate[model_name] = {}
total_character_error_rate[model_name] = {}
for noise_name in noise_names:
total_word_error_rate[model_name][noise_name]={"-7.5":0.0, "-10":0.0}
total_character_error_rate[model_name][noise_name] = {"-7.5": 0.0, "-10": 0.0}
video_path = input_path / model_name
video_lists = glob.glob(os.path.join(video_path, "*.mp4"))
sorted_video_lists = sorted(video_lists)
for vid in sorted_video_lists:
file_name = vid.split("/")[-1].split(".")[0]
if args.language == "French":
file_name=file_name.replace('F','f',1)
elif args.language == "English":
file_name = file_name.replace('E', 'e', 1)
elif args.language == "Italian":
file_name = file_name.replace('I', 'i', 1)
elif args.language == "Greek":
file_name = file_name.replace('G', 'g', 1)
if is_valid[file_name] == 0:
continue
text_file = os.path.join(text_path, file_name + ".txt")
f = open(text_file, "r")
gt_text = f.readlines()[0]
f.close()
for idx, noise_name in enumerate(noise_names):
if is_valid[file_name] == 0:
continue
noise_type = noise_types[idx]
noise_wav_files = NOISE[noise_type]
noise_type_len = len(noise_wav_files)
noise_index = -1
for noise_idx in range(noise_type_len):
noise_wav_file = noise_wav_files[noise_idx]
noise_temp_name = noise_wav_file.split("/")[-1].split(".")[0]
if noise_name != noise_temp_name:
continue
noise_index = noise_idx
noise_wav_file = noise_wav_files[noise_index]
word_error_rate, character_error_rate, is_valid = test_WER(sorted(AV_RESOURCES.keys())[0], vid, gt_text,
noise_type, model_name, noise_name,
noise_wav_file, output_path, file_name, is_valid)
if is_valid[file_name] == 1:
for snr_idx in range(len(snr_values)):
total_word_error_rate[model_name][noise_name][snr_values[snr_idx]] += word_error_rate[snr_idx]
total_character_error_rate[model_name][noise_name][snr_values[snr_idx]] += character_error_rate[snr_idx]
out_filepath = output_path / model_name / file_name
audio_filepath = out_filepath / "audio.wav"
video_filepath = out_filepath / "video.mp4"
lip_video_filepath = out_filepath / "lip_movement.mp4"
os.remove(audio_filepath)
os.remove(video_filepath)
os.remove(lip_video_filepath)
print(f"sum(is_valid.values) : {sum(is_valid.values())}, len(is_valid) : {len(is_valid)}")
wer_results[model_name] = {"-7.5":0, "-10":0}
cer_results[model_name] = {"-7.5":0, "-10":0}
for snr_value in snr_values:
for noise_name in noise_names:
wer_results[model_name][snr_value] += total_word_error_rate[model_name][noise_name][snr_value]/sum(is_valid.values())
cer_results[model_name][snr_value] += total_character_error_rate[model_name][noise_name][snr_value]/sum(is_valid.values())
wer_results[model_name][snr_value] = wer_results[model_name][snr_value] / len(noise_names)
cer_results[model_name][snr_value] = cer_results[model_name][snr_value] / len(noise_names)
with open(wer_path, 'w') as f:
json.dump(wer_results, f, indent=4)
f.close()
with open(cer_path, 'w') as f:
json.dump(cer_results, f, indent=4)
f.close()
with open(is_valid_path, 'w') as f:
json.dump(is_valid, f, indent=4)
f.close()
print(f"{model_name} end.")
with open(wer_path, 'w') as f:
json.dump(wer_results, f, indent=4)
f.close()
with open(cer_path, 'w') as f:
json.dump(cer_results, f, indent=4)
f.close()
with open(is_valid_path, 'w') as f:
json.dump(is_valid, f, indent=4)
f.close()
print(f"Total end in {time.time()-start_eval} secs.") |