File size: 13,809 Bytes
6931c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Copyright (c) Meta Platforms, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import re
import cv2
import sox
import wget
import yt_dlp
import ffmpeg
import pickle
import tarfile
import warnings
import numpy as np
import pandas as pd
from tqdm import tqdm
from skimage import transform
from collections import deque
from urllib.error import HTTPError


def is_empty(path):
    return any(path.iterdir()) == False


def read_txt_file(txt_filepath):
    with open(txt_filepath) as fin:
        return (line.strip() for line in fin.readlines())


def write_txt_file(lines, out_txt_filepath):
    with open(out_txt_filepath, "w") as fout:
        fout.writelines("\n".join([ln.strip() for ln in lines]))


def normalize_text(text):
    PUNCS = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~؟؛,’‘×÷"
    # remove sound-effect description
    text = re.sub(r"\([^)]*\)", "", text)
    # remove punctuations
    text = text.translate(str.maketrans("", "", PUNCS))
    # normalize case
    text = text.lower()
    return text.strip()


def download_file(url, download_path):
    filename = url.rpartition("/")[-1]
    if not (download_path / filename).exists():
        try:
            # download file
            print(f"Downloading {filename} from {url}")
            custom_bar = (
                lambda current, total, width=80: wget.bar_adaptive(
                    round(current / 1024 / 1024, 2),
                    round(total / 1024 / 1024, 2),
                    width,
                )
                + " MB"
            )
            wget.download(url, out=str(download_path / filename), bar=custom_bar)
        except Exception as e:
            message = f"Downloading {filename} failed!"
            raise HTTPError(e.url, e.code, message, e.hdrs, e.fp)
    return True


def extract_tgz(tgz_filepath, extract_path, out_filename=None):
    if not tgz_filepath.exists():
        raise FileNotFoundError(f"{tgz_filepath} is not found!!")
    tgz_filename = tgz_filepath.name
    tgz_object = tarfile.open(tgz_filepath)
    if not out_filename:
        out_filename = tgz_object.getnames()[0]
    # check if file is already extracted
    if not (extract_path / out_filename).exists():
        for mem in tqdm(tgz_object.getmembers(), desc=f"Extracting {tgz_filename}"):
            out_filepath = extract_path / mem.get_info()["name"]
            if mem.isfile() and not out_filepath.exists():
                tgz_object.extract(mem, path=extract_path)
    tgz_object.close()


def download_extract_file_if_not(url, tgz_filepath, download_filename):
    download_path = tgz_filepath.parent
    if not tgz_filepath.exists():
        # download file
        download_file(url, download_path)
    # extract file
    extract_tgz(tgz_filepath, download_path, download_filename)


def load_meanface_metadata(metadata_path):
    mean_face_filepath = metadata_path / "20words_mean_face.npy"
    if not mean_face_filepath.exists():
        download_file(
            "https://dl.fbaipublicfiles.com/muavic/metadata/20words_mean_face.npy",
            metadata_path,
        )
    return np.load(mean_face_filepath)


def load_video_metadata(filepath):
    if not filepath.exists():
        # download & extract file
        lang_dir = filepath.parent.parent
        lang = lang_dir.name
        tgz_filepath = lang_dir.parent / f"{lang}_metadata.tgz"
        download_extract_file_if_not(
            url=f"https://dl.fbaipublicfiles.com/muavic/metadata/{lang}_metadata.tgz",
            tgz_filepath=tgz_filepath,
            download_filename=lang
        )
    if not filepath.exists():
        # file doesn't have metadata
        return None
    assert filepath.exists(), f"{filepath} should've been downloaded!"
    with open(filepath, "rb") as fin:
        metadata = pickle.load(fin)
    return metadata


def download_video_from_youtube(download_path, yt_id):
    """Downloads a video from YouTube given its id on YouTube"""
    video_out_path = download_path / f"{yt_id}.mp4"
    if video_out_path.exists():
        downloaded = True
    else:
        url = f"https://www.youtube.com/watch?v={yt_id}"
        # downloads the best `mp4` audio/video resolution.
        # TODO: download only video (no audio)
        ydl_opts = {"quiet": True, "format": "mp4", "outtmpl": str(video_out_path)}
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            try:
                ydl.download([url])
                downloaded = True
            except yt_dlp.utils.DownloadError:
                downloaded = False
    return downloaded


# def save_video(frames, out_filepath, fps):
#     height, width, _ = frames[0].shape
#     writer = cv2.VideoWriter(
#             filename=out_filepath,
#             fourcc=cv2.VideoWriter_fourcc(*'mp4v'),
#             fps=float(fps),
#             frameSize=(width, height)
#         )
#     for frame in frames:
#         writer.write(frame)
#     writer.release()


def resize_frames(input_frames, new_size):
    resized_frames = []
    for frame in input_frames:
        try:
            resized_frames.append(cv2.resize(frame, new_size))
        except:
            pass #some frames are corrupt or missing
    return resized_frames


def get_audio_duration(audio_filepath):
    return sox.file_info.duration(audio_filepath)


def get_video_duration(video_filepath):
    try:
        streams = ffmpeg.probe(video_filepath)["streams"]
        for stream in streams:
            if stream["codec_type"] == "video":
                return float(stream["duration"])
    except:
        warnings.warn(f"Video file: `{video_filepath}` is corrupted... skipping!!")
        return -1


def get_video_resolution(video_filepath):
    for stream in ffmpeg.probe(video_filepath)["streams"]:
        if stream["codec_type"] == "video":
            height = int(stream["height"])
            width = int(stream["width"])
            return height, width
    raise TypeError(f"Input file: {video_filepath} doesn't have video stream!")


def get_audio_video_info(audio_path, video_path, fid):
    audio_filepath = audio_path / f"{fid}.wav"
    video_filepath = video_path / f"{fid}.mp4"
    audio_frames = (
        int(get_audio_duration(audio_filepath) * 16_000)
        if audio_filepath.exists()
        else -1
    )
    video_frames = (
        int(get_video_duration(video_filepath) * 25) if video_filepath.exists() else -1
    )
    return {
        "id": fid,
        "video": str(video_filepath),
        "audio": str(audio_filepath),
        "video_frames": video_frames,
        "audio_samples": audio_frames,
    }


def split_video_to_frames(video_filepath, fstart=None, fend=None, out_fps=25):
    # src: https://github.com/kylemcdonald/python-utils/blob/master/ffmpeg.py
    #NOTE: splitting video into frames is faster on CPU than GPU
    width, height = get_video_resolution(video_filepath)
    video_stream = ffmpeg.input(str(video_filepath)).video.filter("fps", fps=out_fps)
    channels = 3
    try:
        if fstart is not None and fend is not None:
            process = (
                video_stream.trim(start_frame=fstart, end_frame=fend)
                .setpts("PTS-STARTPTS")
                .output("pipe:", format="rawvideo", pix_fmt="bgr24")
                .run_async(pipe_stdout=True, quiet=True)
            )
            frames_counter = 0
            while frames_counter < fend - fstart:
                in_bytes = process.stdout.read(width * height * channels)
                in_frame = np.frombuffer(in_bytes, np.uint8).reshape(
                    width, height, channels
                )
                yield in_frame
                frames_counter += 1
        else:
            process = (
                video_stream.setpts("PTS-STARTPTS")
                .output("pipe:", format="rawvideo", pix_fmt="bgr24")
                .run_async(pipe_stdout=True, quiet=True)
            )
            while True:
                in_bytes = process.stdout.read(width * height * channels)
                if not in_bytes:
                    break
                in_frame = np.frombuffer(in_bytes, np.uint8).reshape(
                    width, height, channels
                )
                yield in_frame

    finally:
        process.stdout.close()
        process.wait()


def save_video(frames, out_filepath, fps, vcodec="libx264"):
    if len(frames) == 0:
        warnings.warn(
            f"Video segment `{out_filepath.stem}` has no metadata..." +
            " skipping!!" 
        )
        return
    height, width, _ = frames[0].shape
    process = (
        ffmpeg.input(
            "pipe:", format="rawvideo", pix_fmt="bgr24", s="{}x{}".format(width, height)
        )
        .output(str(out_filepath), pix_fmt="bgr24", vcodec=vcodec, r=fps)
        .overwrite_output()
        .run_async(pipe_stdin=True, quiet=True)
    )
    for _, frame in enumerate(frames):
        try:
            process.stdin.write(frame.astype(np.uint8).tobytes())
        except:
            print(process.stderr.read())
    process.stdin.close()
    process.wait()


def load_video(filename):
    cap = cv2.VideoCapture(filename)
    while cap.isOpened():
        ret, frame = cap.read()  # BGR
        if ret:
            yield frame
        else:
            break
    cap.release()


def warp_img(src, dst, img, std_size):
    tform = transform.estimate_transform(
        "similarity", src, dst
    )  # find the transformation matrix
    warped = transform.warp(
        img, inverse_map=tform.inverse, output_shape=std_size
    )  # warp
    warped = warped * 255  # note output from wrap is double image (value range [0,1])
    warped = warped.astype("uint8")
    return warped, tform


def apply_transform(trans, img, std_size):
    warped = transform.warp(img, inverse_map=trans.inverse, output_shape=std_size)
    warped = warped * 255  # note output from warp is double image (value range [0,1])
    warped = warped.astype("uint8")
    return warped


def cut_patch(img, metadata, height, width, threshold=5):
    center_x, center_y = np.mean(metadata, axis=0)
    if center_y - height < 0:
        center_y = height
    if center_y - height < 0 - threshold:
        raise Exception("too much bias in height")
    if center_x - width < 0:
        center_x = width
    if center_x - width < 0 - threshold:
        raise Exception("too much bias in width")

    if center_y + height > img.shape[0]:
        center_y = img.shape[0] - height
    if center_y + height > img.shape[0] + threshold:
        raise Exception("too much bias in height")
    if center_x + width > img.shape[1]:
        center_x = img.shape[1] - width
    if center_x + width > img.shape[1] + threshold:
        raise Exception("too much bias in width")

    cutted_img = np.copy(
        img[
            int(round(center_y) - round(height)) : int(round(center_y) + round(height)),
            int(round(center_x) - round(width)) : int(round(center_x) + round(width)),
        ]
    )
    return cutted_img


def crop_patch(
    video_frames,
    num_frames,
    metadata,
    mean_face_metadata,
    std_size=(256, 256),
    window_margin=12,
    start_idx=48,
    stop_idx=68,
    crop_height=96,
    crop_width=96,
):
    """Crop mouth patch"""
    stablePntsIDs = [33, 36, 39, 42, 45]
    margin = min(num_frames, window_margin)
    q_frame, q_metadata = deque(), deque()
    sequence = []
    for frame_idx, frame in enumerate(video_frames):
        if frame_idx >= len(metadata):
            break  #! Sadly, this is necessary
        q_metadata.append(metadata[frame_idx])
        q_frame.append(frame)
        if len(q_frame) == margin:
            smoothed_metadata = np.mean(q_metadata, axis=0)
            cur_metadata = q_metadata.popleft()
            cur_frame = q_frame.popleft()
            # -- affine transformation
            trans_frame, trans = warp_img(
                smoothed_metadata[stablePntsIDs, :],
                mean_face_metadata[stablePntsIDs, :],
                cur_frame,
                std_size,
            )
            trans_metadata = trans(cur_metadata)
            # -- crop mouth patch
            sequence.append(
                cut_patch(
                    trans_frame,
                    trans_metadata[start_idx:stop_idx],
                    crop_height // 2,
                    crop_width // 2,
                )
            )

    while q_frame:
        cur_frame = q_frame.popleft()
        # -- transform frame
        trans_frame = apply_transform(trans, cur_frame, std_size)
        # -- transform metadata
        trans_metadata = trans(q_metadata.popleft())
        # -- crop mouth patch
        sequence.append(
            cut_patch(
                trans_frame,
                trans_metadata[start_idx:stop_idx],
                crop_height // 2,
                crop_width // 2,
            )
        )
    return sequence


def read_av_manifest(tsv_filepath):
    with open(tsv_filepath) as fin:
        res = []
        for ln in fin.readlines()[1:]:
            id_, video, audio, video_frames, audio_samples = ln.strip().split("\t")
            res.append(
                {
                    "id": id_,
                    "video": video,
                    "audio": audio,
                    "video_frames": video_frames,
                    "audio_samples": audio_samples,
                }
            )
    df = pd.DataFrame(res)
    df["video_frames"] = df["video_frames"].astype(int)
    df["audio_samples"] = df["audio_samples"].astype(int)
    return df


def write_av_manifest(df, out_filepath):
    with open(out_filepath, "w") as fout:
        fout.write("/\n")
    df.to_csv(out_filepath, sep="\t", header=False, index=False, mode="a")