File size: 5,343 Bytes
6931c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
# encoding: utf-8

# Copyright (c) 2012 Max Planck Society. All rights reserved.

import os

import numpy as np
import unittest

from . import test_data_folder
from unittest.case import skipUnless

try:
    import cv2
    has_cv2 = True
except ImportError:
    has_cv2 = False


class TestGeometry(unittest.TestCase):

    @skipUnless(has_cv2, 'skipping tests requiring OpenCV')
    def test_rodrigues(self):
        from psbody.mesh.geometry.rodrigues import rodrigues

        test_data = (
            np.array([0, 0, 0], dtype=np.double),
            np.array([1, -1, 0.5], dtype=np.double),
            np.array([[1, -1, 0.5]], dtype=np.double),
            np.array([[1, -1, 0.5]], dtype=np.double).T,
            np.eye(3, dtype=np.double),
            np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]], dtype=np.double),
            np.array([[0.22629564, 0.95671228, -0.18300792],
                      [-0.18300792, 0.22629564, 0.95671228],
                      [0.95671228, -0.18300792, 0.22629564]], dtype=np.double),
        )
        for r_in in test_data:
            true_r, true_dr = cv2.Rodrigues(r_in)
            our_r, our_dr = rodrigues(r_in)
            np.testing.assert_array_almost_equal(our_r, true_r, verbose=True)
            np.testing.assert_array_almost_equal(our_dr, true_dr, verbose=True)

    def test_cross_product(self):
        from psbody.mesh.geometry.cross_product import CrossProduct

        npts = 6
        a = np.random.randn(3 * npts)
        b = np.random.randn(3 * npts)

        c = CrossProduct(a, b)

        # this should be close to (or exactly) zero
        our_answer = c.flatten()
        numpy_answer = np.cross(a.reshape(-1, 3), b.reshape(-1, 3)).flatten()

        self.assertTrue(max(abs(our_answer - numpy_answer)) < 1e-15)

    def test_vert_normals(self):
        from psbody.mesh.geometry.vert_normals import VertNormals
        from psbody.mesh.mesh import Mesh
        mesh = Mesh(filename=os.path.join(test_data_folder, 'sphere.ply'))
        pred = VertNormals(mesh.v, mesh.f)

        vn_obs = mesh.estimate_vertex_normals().reshape((-1, 3))
        vn_pred = pred.reshape((-1, 3))

        self.assertTrue(np.max(np.abs(vn_pred.flatten() - vn_obs.flatten())) < 1e-15)

    def test_barycentric_coordinates_of_projection(self):
        """Tests backwards compatibility with old matlab
        function of the same name."""
        from psbody.mesh.geometry.barycentric_coordinates_of_projection import barycentric_coordinates_of_projection

        p = np.array([[-120, 48, -30, 88, -80],
                      [71, 102, 29, -114, -291],
                      [161, 72, -78, -106, 142]]).T

        q = np.array([[32, -169, 32, -3, 108],
                      [-75, -10, 31, -16, 110],
                      [136, -24, -86, 62, -86]]).T

        u = np.array([[8, -1, 37, -108, 109],
                      [-120, 152, -22, 3, 153],
                      [-110, -76, 111, 55, 9]]).T

        v = np.array([[-148, 233, -19, -139, -18],
                      [-73, -61, 88, -141, -19],
                      [-105, 74, -76, 48, 141]]).T

        b = np.array([[1.5266, -0.8601, 1.3245, 2.4450, 1.3452],
                      [-1.5346, 0.8556, -0.1963, -2.1865, -2.0794],
                      [1.0080, 1.0046, -0.1282, 0.7415, 1.7342]]).T

        b_est = barycentric_coordinates_of_projection(p, q, u, v)
        self.assertTrue(np.max(np.abs(b_est.flatten('F') - b.flatten('F'))) < 1e-3)

        p = p[0, :]
        q = q[0, :]
        u = u[0, :]
        v = v[0, :]
        b = b[0, :]

        b_est = barycentric_coordinates_of_projection(p, q, u, v)
        self.assertTrue(np.max(np.abs(b_est.flatten('F') - b.flatten('F'))) < 1e-3)

    @unittest.skipIf(
        not os.path.isfile(os.path.join(test_data_folder, 'female_template.ply')),
        'No data file.')
    def test_trinormal(self):

        from psbody.mesh.mesh import Mesh
        from psbody.mesh.geometry.tri_normals import TriNormals, TriToScaledNormal, TriNormalsScaled, NormalizeRows

        m = Mesh(filename=os.path.join(test_data_folder, 'female_template.ply'))

        # Raffi: I do not know what this thing is supposed to test, maybe stability over some noise...
        tn = TriNormals(m.v, m.f)
        tn2 = NormalizeRows(TriToScaledNormal(m.v, m.f))

        eps = 1e-8
        mvc = m.v.copy()
        mvc[0] += eps
        tn_b = TriNormals(mvc, m.f)
        tn2_b = NormalizeRows(TriToScaledNormal(mvc, m.f))
        # our TriNormals empirical: sp.csc_matrix(tn_b.flatten() - tn.flatten()) / eps
        # old TriToScaledNormals empirical': sp.csc_matrix(tn2_b.flatten() - tn2.flatten()) / eps

        # apparently just for printing sparsly
        # import scipy.sparse as sp
        # print sp.csc_matrix(tn_b.flatten() - tn.flatten()) / eps
        np.testing.assert_almost_equal(tn_b.flatten() - tn.flatten(),
                                       tn2_b.flatten() - tn2.flatten())

        tn = TriNormalsScaled(m.v, m.f)
        tn2 = TriToScaledNormal(m.v, m.f)
        eps = 1e-8
        mvc = m.v.copy()
        mvc[0] += eps

        tn_b = TriNormalsScaled(mvc, m.f)
        tn2_b = TriToScaledNormal(mvc, m.f)

        np.testing.assert_almost_equal(tn_b.flatten() - tn.flatten(),
                                       tn2_b.flatten() - tn2.flatten())