File size: 10,382 Bytes
6931c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from einops.layers.torch import Rearrange
import torch
import torch.nn as nn
from torch.nn import functional as F

from utils.base_model_util import *
import math

class Norm(nn.Module):
  """ Norm Layer """

  def __init__(self, fn, size):
    super().__init__()
    self.norm = nn.LayerNorm(size, eps=1e-5)
    self.fn = fn

  def forward(self, x_data):
    if type(x_data) is dict:
        x_norm = self.fn({'x_a':x_data['x_a'], 'x_b':self.norm(x_data['x_b'])})
        return x_norm
    else:
        x, mask_info = x_data
        x_norm, _ = self.fn((self.norm(x), mask_info))
        return (x_norm, mask_info)

class Residual(nn.Module):
  """ Residual Layer """

  def __init__(self, fn):
    super().__init__()
    self.fn = fn

  def forward(self, x_data):
    if type(x_data) is dict:
        x_resid = self.fn(x_data)['x_b']
        return {'x_a':x_data['x_a'], 'x_b':x_resid+x_data['x_b']}
    else:
        x, mask_info = x_data
        x_resid, _ = self.fn(x_data)
        return (x_resid + x, mask_info)


class MLP(nn.Module):
  """ MLP Layer """

  def __init__(self, in_dim, out_dim, hidden_dim):
    super().__init__()
    self.l1 = nn.Linear(in_dim, hidden_dim)
    self.activation = get_activation("gelu")
    self.l2 = nn.Linear(hidden_dim, out_dim)

  def forward(self, x_data):
    if type(x_data) is dict:
        out = self.l2(self.activation(self.l1(x_data['x_b'])))
        return {'x_a':x_data['x_a'], 'x_b':out}
    else:
        x, mask_info = x_data
        out = self.l2(self.activation(self.l1(x)))
        return (out, mask_info)


class CrossModalAttention(nn.Module):
  """ Cross Modal Attention Layer

  Given 2 modalities (a, b), computes the K,V from modality b and Q from

  modality a.

  """

  def __init__(self, in_dim, dim, heads=8, in_dim2=None):
    super().__init__()
    self.heads = heads
    self.scale = dim**-0.5

    if in_dim2 is not None:
        self.to_kv = nn.Linear(in_dim2, in_dim2 * 2, bias=False)
    else:
        self.to_kv = nn.Linear(in_dim, dim * 2, bias=False)
    self.to_q = nn.Linear(in_dim, dim, bias=False)
    if in_dim2 is not None:
        dim2 = int((in_dim + in_dim2*2) / 3)
    else:
        dim2 = dim
    self.to_out = nn.Linear(dim2, dim)

    self.rearrange_qkv = Rearrange(
        "b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
    self.rearrange_out = Rearrange("b h n d -> b n (h d)")

  def forward(self, x_data):
    x_a = x_data['x_a']
    x_b = x_data['x_b']

    kv = self.to_kv(x_b)
    q = self.to_q(x_a)

    qkv = torch.cat((q, kv), dim=-1)
    qkv = self.rearrange_qkv(qkv)
    q = qkv[0]
    k = qkv[1]
    v = qkv[2]

    dots = torch.einsum("bhid,bhjd->bhij", q, k) * self.scale
    attn = F.softmax(dots, dim=-1)

    out = torch.einsum("bhij,bhjd->bhid", attn, v)
    out = self.rearrange_out(out)
    out = self.to_out(out)
    return {'x_a':x_a, 'x_b':out}


class Attention(nn.Module):
  """ Attention Layer """

  def __init__(self, in_dim, dim, heads=8):
    super().__init__()
    self.heads = heads
    self.scale = dim**-0.5

    self.to_qkv = nn.Linear(in_dim, dim * 3, bias=False)
    self.to_out = nn.Linear(dim, dim)

    self.rearrange_qkv = Rearrange(
        "b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
    self.rearrange_out = Rearrange("b h n d -> b n (h d)")

  def forward(self, x_data):
    x, mask_info = x_data
    max_mask = mask_info['max_mask']
    mask = mask_info['mask']
    #
    qkv = self.to_qkv(x)
    qkv = self.rearrange_qkv(qkv)
    q = qkv[0]
    k = qkv[1]
    v = qkv[2]

    dots = torch.einsum("bhid,bhjd->bhij", q, k) * self.scale
    if max_mask is not None:
        dots[:,:,:max_mask,:max_mask] = \
            dots[:,:,:max_mask,:max_mask].masked_fill(mask == 0., float('-inf'))

    attn = F.softmax(dots, dim=-1)

    out = torch.einsum("bhij,bhjd->bhid", attn, v)
    out = self.rearrange_out(out)
    out = self.to_out(out)
    return (out, mask_info)


class Transformer(nn.Module):
  """ Transformer class

  Parameters

  ----------

  cross_modal : bool

    if true, uses cross-modal attention layers, else is the vanilla Transformer

  in_dim2 : int

    specifies the feature size of the second modality if using cross_modal

  """

  def __init__(self,

               in_size=50,

               hidden_size=768,

               num_hidden_layers=12,

               num_attention_heads=12,

               intermediate_size=3072,

               cross_modal=False,

               in_dim2=None):
    super().__init__()
    blocks = []
    attn = False

    self.cross_modal = cross_modal
    if cross_modal:
      for i in range(num_hidden_layers):
        blocks.extend([
            Residual(Norm(CrossModalAttention(in_size, hidden_size,
                                              heads=num_attention_heads,
                                              in_dim2=in_dim2), hidden_size)),
            Residual(Norm(MLP(hidden_size, hidden_size, intermediate_size),
                              hidden_size))
        ])
    else:
      for i in range(num_hidden_layers):
        blocks.extend([
            Residual(Norm(Attention(in_size, hidden_size,
                                    heads=num_attention_heads), hidden_size)),
            Residual(Norm(MLP(hidden_size, hidden_size, intermediate_size),
                              hidden_size))
        ])
    self.net = torch.nn.Sequential(*blocks)

  def forward(self, x_data):
    if self.cross_modal:
      assert type(x_data) is dict
      x_data = self.net(x_data)
      x = x_data['x_b']
    else:
      x, mask_info = x_data
      x, _ = self.net((x, mask_info))
    return x


class LinearEmbedding(nn.Module):
  """ Linear Layer """

  def __init__(self, size, dim):
    super().__init__()
    self.net = nn.Linear(size, dim)

  def forward(self, x):
    return self.net(x)


class AudioEmbedding(nn.Module):
  """ Audio embedding layer

  Parameters

  ----------

  size : int

    the input feature size of the audio embedding

  dim : int

    the desired output feature size for the audio embedding

  quant_factor: int

    specifies the number of max pool layers applied along the temporal dimension

  version: str (default is 'v6')

    specifies which version of the audio embedding to use

  """

  def __init__(self, size, dim, quant_factor, version='v6'):
    super().__init__()
    self.proj = None
    if version == 'v6':
        print('MODEL V6')
        self.net = nn.MaxPool1d(4)
        layers = [nn.Sequential(nn.MaxPool1d(2))]
        for _ in range(1, quant_factor):
            layers += [nn.Sequential(
                           nn.MaxPool1d(2)
                           )]
        self.squasher = nn.Sequential(*layers)
        self.proj = nn.Linear(size,dim)

  def forward(self, x):
    x = self.net(x)
    x = self.squasher(x)
    if self.proj is not None:
        x = self.proj(x.permute(0,2,1)).permute(0,2,1)
    return x

class PositionEmbedding(nn.Module):
  """Postion Embedding Layer"""

  def __init__(self, seq_length, dim):
    super().__init__()
    self.pos_embedding = nn.Parameter(torch.zeros(seq_length, dim))

  def forward(self, x):
    return x + self.pos_embedding

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)


class CrossModalLayer(nn.Module):
  """Cross Modal Layer inspired by FACT [Li 2021]"""

  def __init__(self, config):
    super().__init__()
    self.config = config
    model_config = self.config['transformer']
    self.transformer_layer = Transformer(
        in_size=model_config['hidden_size'],
        hidden_size=model_config['hidden_size'],
        num_hidden_layers=model_config['num_hidden_layers'],
        num_attention_heads=model_config['num_attention_heads'],
        intermediate_size=model_config['intermediate_size'])

    output_layer_config = self.config['output_layer']
    self.cross_norm_layer = nn.LayerNorm(self.config['in_dim'])
    self.cross_output_layer = nn.Linear(
                                    self.config['in_dim'],
                                    output_layer_config['out_dim'],
                                    bias=False)

    self.cross_pos_embedding = PositionEmbedding(
            self.config["sequence_length"], self.config['in_dim'])


  def forward(self, modal_a_sequences, modal_b_sequences, mask_info):
    """

    Parameters

    ----------

    modal_a_sequences : tensor

        the first modality (e.g. Listener motion embedding)

    modal_b_sequences : tensor

        the second modality (e.g. Speaker motion+audio embedding)

    mask_info: dict

        specifies the binary mask that is applied to the Transformer attention

    """

    _, _, modal_a_width = get_shape_list(modal_a_sequences)
    merged_sequences = modal_a_sequences
    if modal_b_sequences is not None:
        _, _, modal_b_width = get_shape_list(modal_b_sequences)
        if modal_a_width != modal_b_width:
          raise ValueError(
              "The modal_a hidden size (%d) should be the same with the modal_b"
              "hidden size (%d)" % (modal_a_width, modal_b_width))
        merged_sequences = torch.cat([merged_sequences, modal_b_sequences],
                                      axis=1)

    merged_sequences = self.cross_pos_embedding(merged_sequences)
    merged_sequences = self.transformer_layer((merged_sequences, mask_info))
    merged_sequences = self.cross_norm_layer(merged_sequences)
    logits = self.cross_output_layer(merged_sequences)
    return logits