File size: 10,382 Bytes
6931c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
from einops.layers.torch import Rearrange
import torch
import torch.nn as nn
from torch.nn import functional as F
from utils.base_model_util import *
import math
class Norm(nn.Module):
""" Norm Layer """
def __init__(self, fn, size):
super().__init__()
self.norm = nn.LayerNorm(size, eps=1e-5)
self.fn = fn
def forward(self, x_data):
if type(x_data) is dict:
x_norm = self.fn({'x_a':x_data['x_a'], 'x_b':self.norm(x_data['x_b'])})
return x_norm
else:
x, mask_info = x_data
x_norm, _ = self.fn((self.norm(x), mask_info))
return (x_norm, mask_info)
class Residual(nn.Module):
""" Residual Layer """
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x_data):
if type(x_data) is dict:
x_resid = self.fn(x_data)['x_b']
return {'x_a':x_data['x_a'], 'x_b':x_resid+x_data['x_b']}
else:
x, mask_info = x_data
x_resid, _ = self.fn(x_data)
return (x_resid + x, mask_info)
class MLP(nn.Module):
""" MLP Layer """
def __init__(self, in_dim, out_dim, hidden_dim):
super().__init__()
self.l1 = nn.Linear(in_dim, hidden_dim)
self.activation = get_activation("gelu")
self.l2 = nn.Linear(hidden_dim, out_dim)
def forward(self, x_data):
if type(x_data) is dict:
out = self.l2(self.activation(self.l1(x_data['x_b'])))
return {'x_a':x_data['x_a'], 'x_b':out}
else:
x, mask_info = x_data
out = self.l2(self.activation(self.l1(x)))
return (out, mask_info)
class CrossModalAttention(nn.Module):
""" Cross Modal Attention Layer
Given 2 modalities (a, b), computes the K,V from modality b and Q from
modality a.
"""
def __init__(self, in_dim, dim, heads=8, in_dim2=None):
super().__init__()
self.heads = heads
self.scale = dim**-0.5
if in_dim2 is not None:
self.to_kv = nn.Linear(in_dim2, in_dim2 * 2, bias=False)
else:
self.to_kv = nn.Linear(in_dim, dim * 2, bias=False)
self.to_q = nn.Linear(in_dim, dim, bias=False)
if in_dim2 is not None:
dim2 = int((in_dim + in_dim2*2) / 3)
else:
dim2 = dim
self.to_out = nn.Linear(dim2, dim)
self.rearrange_qkv = Rearrange(
"b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
self.rearrange_out = Rearrange("b h n d -> b n (h d)")
def forward(self, x_data):
x_a = x_data['x_a']
x_b = x_data['x_b']
kv = self.to_kv(x_b)
q = self.to_q(x_a)
qkv = torch.cat((q, kv), dim=-1)
qkv = self.rearrange_qkv(qkv)
q = qkv[0]
k = qkv[1]
v = qkv[2]
dots = torch.einsum("bhid,bhjd->bhij", q, k) * self.scale
attn = F.softmax(dots, dim=-1)
out = torch.einsum("bhij,bhjd->bhid", attn, v)
out = self.rearrange_out(out)
out = self.to_out(out)
return {'x_a':x_a, 'x_b':out}
class Attention(nn.Module):
""" Attention Layer """
def __init__(self, in_dim, dim, heads=8):
super().__init__()
self.heads = heads
self.scale = dim**-0.5
self.to_qkv = nn.Linear(in_dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim)
self.rearrange_qkv = Rearrange(
"b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
self.rearrange_out = Rearrange("b h n d -> b n (h d)")
def forward(self, x_data):
x, mask_info = x_data
max_mask = mask_info['max_mask']
mask = mask_info['mask']
#
qkv = self.to_qkv(x)
qkv = self.rearrange_qkv(qkv)
q = qkv[0]
k = qkv[1]
v = qkv[2]
dots = torch.einsum("bhid,bhjd->bhij", q, k) * self.scale
if max_mask is not None:
dots[:,:,:max_mask,:max_mask] = \
dots[:,:,:max_mask,:max_mask].masked_fill(mask == 0., float('-inf'))
attn = F.softmax(dots, dim=-1)
out = torch.einsum("bhij,bhjd->bhid", attn, v)
out = self.rearrange_out(out)
out = self.to_out(out)
return (out, mask_info)
class Transformer(nn.Module):
""" Transformer class
Parameters
----------
cross_modal : bool
if true, uses cross-modal attention layers, else is the vanilla Transformer
in_dim2 : int
specifies the feature size of the second modality if using cross_modal
"""
def __init__(self,
in_size=50,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
cross_modal=False,
in_dim2=None):
super().__init__()
blocks = []
attn = False
self.cross_modal = cross_modal
if cross_modal:
for i in range(num_hidden_layers):
blocks.extend([
Residual(Norm(CrossModalAttention(in_size, hidden_size,
heads=num_attention_heads,
in_dim2=in_dim2), hidden_size)),
Residual(Norm(MLP(hidden_size, hidden_size, intermediate_size),
hidden_size))
])
else:
for i in range(num_hidden_layers):
blocks.extend([
Residual(Norm(Attention(in_size, hidden_size,
heads=num_attention_heads), hidden_size)),
Residual(Norm(MLP(hidden_size, hidden_size, intermediate_size),
hidden_size))
])
self.net = torch.nn.Sequential(*blocks)
def forward(self, x_data):
if self.cross_modal:
assert type(x_data) is dict
x_data = self.net(x_data)
x = x_data['x_b']
else:
x, mask_info = x_data
x, _ = self.net((x, mask_info))
return x
class LinearEmbedding(nn.Module):
""" Linear Layer """
def __init__(self, size, dim):
super().__init__()
self.net = nn.Linear(size, dim)
def forward(self, x):
return self.net(x)
class AudioEmbedding(nn.Module):
""" Audio embedding layer
Parameters
----------
size : int
the input feature size of the audio embedding
dim : int
the desired output feature size for the audio embedding
quant_factor: int
specifies the number of max pool layers applied along the temporal dimension
version: str (default is 'v6')
specifies which version of the audio embedding to use
"""
def __init__(self, size, dim, quant_factor, version='v6'):
super().__init__()
self.proj = None
if version == 'v6':
print('MODEL V6')
self.net = nn.MaxPool1d(4)
layers = [nn.Sequential(nn.MaxPool1d(2))]
for _ in range(1, quant_factor):
layers += [nn.Sequential(
nn.MaxPool1d(2)
)]
self.squasher = nn.Sequential(*layers)
self.proj = nn.Linear(size,dim)
def forward(self, x):
x = self.net(x)
x = self.squasher(x)
if self.proj is not None:
x = self.proj(x.permute(0,2,1)).permute(0,2,1)
return x
class PositionEmbedding(nn.Module):
"""Postion Embedding Layer"""
def __init__(self, seq_length, dim):
super().__init__()
self.pos_embedding = nn.Parameter(torch.zeros(seq_length, dim))
def forward(self, x):
return x + self.pos_embedding
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class CrossModalLayer(nn.Module):
"""Cross Modal Layer inspired by FACT [Li 2021]"""
def __init__(self, config):
super().__init__()
self.config = config
model_config = self.config['transformer']
self.transformer_layer = Transformer(
in_size=model_config['hidden_size'],
hidden_size=model_config['hidden_size'],
num_hidden_layers=model_config['num_hidden_layers'],
num_attention_heads=model_config['num_attention_heads'],
intermediate_size=model_config['intermediate_size'])
output_layer_config = self.config['output_layer']
self.cross_norm_layer = nn.LayerNorm(self.config['in_dim'])
self.cross_output_layer = nn.Linear(
self.config['in_dim'],
output_layer_config['out_dim'],
bias=False)
self.cross_pos_embedding = PositionEmbedding(
self.config["sequence_length"], self.config['in_dim'])
def forward(self, modal_a_sequences, modal_b_sequences, mask_info):
"""
Parameters
----------
modal_a_sequences : tensor
the first modality (e.g. Listener motion embedding)
modal_b_sequences : tensor
the second modality (e.g. Speaker motion+audio embedding)
mask_info: dict
specifies the binary mask that is applied to the Transformer attention
"""
_, _, modal_a_width = get_shape_list(modal_a_sequences)
merged_sequences = modal_a_sequences
if modal_b_sequences is not None:
_, _, modal_b_width = get_shape_list(modal_b_sequences)
if modal_a_width != modal_b_width:
raise ValueError(
"The modal_a hidden size (%d) should be the same with the modal_b"
"hidden size (%d)" % (modal_a_width, modal_b_width))
merged_sequences = torch.cat([merged_sequences, modal_b_sequences],
axis=1)
merged_sequences = self.cross_pos_embedding(merged_sequences)
merged_sequences = self.transformer_layer((merged_sequences, mask_info))
merged_sequences = self.cross_norm_layer(merged_sequences)
logits = self.cross_output_layer(merged_sequences)
return logits |