File size: 9,938 Bytes
6931c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.lib.quantizer import VectorQuantizer
from models.lib.base_models import Transformer, LinearEmbedding, PositionalEncoding
from base import BaseModel
class VQAutoEncoder(BaseModel):
""" VQ-GAN model """
def __init__(self, args):
super().__init__()
self.encoder = TransformerEncoder(args)
self.decoder = TransformerDecoder(args, args.in_dim)
self.quantize = VectorQuantizer(args.n_embed,
args.zquant_dim,
beta=0.25)
self.args = args
def encode(self, x, x_a=None):
h = self.encoder(x) ## x --> z'
h = h.view(x.shape[0], -1, self.args.face_quan_num, self.args.zquant_dim)
h = h.view(x.shape[0], -1, self.args.zquant_dim)
quant, emb_loss, info = self.quantize(h) ## finds nearest quantization
return quant, emb_loss, info
def decode(self, quant):
#BCL
quant = quant.permute(0,2,1)
quant = quant.view(quant.shape[0], -1, self.args.face_quan_num, self.args.zquant_dim).contiguous()
quant = quant.view(quant.shape[0], -1, self.args.face_quan_num*self.args.zquant_dim).contiguous()
quant = quant.permute(0,2,1).contiguous()
dec = self.decoder(quant) ## z' --> x
return dec
def forward(self, x, template):
template = template.unsqueeze(1) #B,V*3 -> B, 1, V*3
x = x - template
###x.shape: [B, L C]
quant, emb_loss, info = self.encode(x)
### quant [B, C, L]
dec = self.decode(quant)
dec = dec + template
return dec, emb_loss, info
def sample_step(self, x, x_a=None):
quant_z, _, info = self.encode(x, x_a)
x_sample_det = self.decode(quant_z)
btc = quant_z.shape[0], quant_z.shape[2], quant_z.shape[1]
indices = info[2]
x_sample_check = self.decode_to_img(indices, btc)
return x_sample_det, x_sample_check
def get_quant(self, x, x_a=None):
quant_z, _, info = self.encode(x, x_a)
indices = info[2]
return quant_z, indices
def get_distances(self, x):
h = self.encoder(x) ## x --> z'
d = self.quantize.get_distance(h)
return d
def get_quant_from_d(self, d, btc):
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
x = self.decode_to_img(min_encoding_indices, btc)
return x
@torch.no_grad()
def entry_to_feature(self, index, zshape):
index = index.long()
quant_z = self.quantize.get_codebook_entry(index.reshape(-1),
shape=None)
quant_z = torch.reshape(quant_z, zshape)
return quant_z
@torch.no_grad()
def decode_to_img(self, index, zshape):
index = index.long()
quant_z = self.quantize.get_codebook_entry(index.reshape(-1),
shape=None)
quant_z = torch.reshape(quant_z, zshape).permute(0,2,1) # B L 1 -> B L C -> B C L
x = self.decode(quant_z)
return x
@torch.no_grad()
def decode_logit(self, logits, zshape):
if logits.dim() == 3:
probs = F.softmax(logits, dim=-1)
_, ix = torch.topk(probs, k=1, dim=-1)
else:
ix = logits
ix = torch.reshape(ix, (-1,1))
x = self.decode_to_img(ix, zshape)
return x
def get_logit(self, logits, sample=True, filter_value=-float('Inf'),
temperature=0.7, top_p=0.9, sample_idx=None):
""" function that samples the distribution of logits. (used in test)
if sample_idx is None, we perform nucleus sampling
"""
logits = logits / temperature
sample_idx = 0
##########
probs = F.softmax(logits, dim=-1) # B, N, embed_num
if sample:
## multinomial sampling
shape = probs.shape
probs = probs.reshape(shape[0]*shape[1],shape[2])
ix = torch.multinomial(probs, num_samples=sample_idx+1)
probs = probs.reshape(shape[0],shape[1],shape[2])
ix = ix.reshape(shape[0],shape[1])
else:
## top 1; no sampling
_, ix = torch.topk(probs, k=1, dim=-1)
return ix, probs
class TransformerEncoder(nn.Module):
""" Encoder class for VQ-VAE with Transformer backbone """
def __init__(self, args):
super().__init__()
self.args = args
size = self.args.in_dim
dim = self.args.hidden_size
self.vertice_mapping = nn.Sequential(nn.Linear(size,dim), nn.LeakyReLU(self.args.neg, True))
if args.quant_factor == 0:
layers = [nn.Sequential(
nn.Conv1d(dim,dim,5,stride=1,padding=2,
padding_mode='replicate'),
nn.LeakyReLU(self.args.neg, True),
nn.InstanceNorm1d(dim, affine=args.INaffine)
)]
else:
layers = [nn.Sequential(
nn.Conv1d(dim,dim,5,stride=2,padding=2,
padding_mode='replicate'),
nn.LeakyReLU(self.args.neg, True),
nn.InstanceNorm1d(dim, affine=args.INaffine)
)]
for _ in range(1, args.quant_factor):
layers += [nn.Sequential(
nn.Conv1d(dim,dim,5,stride=1,padding=2,
padding_mode='replicate'),
nn.LeakyReLU(self.args.neg, True),
nn.InstanceNorm1d(dim, affine=args.INaffine),
nn.MaxPool1d(2)
)]
self.squasher = nn.Sequential(*layers)
self.encoder_transformer = Transformer(
in_size=self.args.hidden_size,
hidden_size=self.args.hidden_size,
num_hidden_layers=\
self.args.num_hidden_layers,
num_attention_heads=\
self.args.num_attention_heads,
intermediate_size=\
self.args.intermediate_size)
self.encoder_pos_embedding = PositionalEncoding(
self.args.hidden_size)
self.encoder_linear_embedding = LinearEmbedding(
self.args.hidden_size,
self.args.hidden_size)
def forward(self, inputs):
## downdample into path-wise length seq before passing into transformer
dummy_mask = {'max_mask': None, 'mask_index': -1, 'mask': None}
inputs = self.vertice_mapping(inputs)
inputs = self.squasher(inputs.permute(0,2,1)).permute(0,2,1) # [N L C]
encoder_features = self.encoder_linear_embedding(inputs)
encoder_features = self.encoder_pos_embedding(encoder_features)
encoder_features = self.encoder_transformer((encoder_features, dummy_mask))
return encoder_features
class TransformerDecoder(nn.Module):
""" Decoder class for VQ-VAE with Transformer backbone """
def __init__(self, args, out_dim, is_audio=False):
super().__init__()
self.args = args
size=self.args.hidden_size
dim=self.args.hidden_size
self.expander = nn.ModuleList()
if args.quant_factor == 0:
self.expander.append(nn.Sequential(
nn.Conv1d(size,dim,5,stride=1,padding=2,
padding_mode='replicate'),
nn.LeakyReLU(self.args.neg, True),
nn.InstanceNorm1d(dim, affine=args.INaffine)
))
else:
self.expander.append(nn.Sequential(
nn.ConvTranspose1d(size,dim,5,stride=2,padding=2,
output_padding=1,
padding_mode='replicate'),
nn.LeakyReLU(self.args.neg, True),
nn.InstanceNorm1d(dim, affine=args.INaffine)
))
num_layers = args.quant_factor+2 \
if is_audio else args.quant_factor
for _ in range(1, num_layers):
self.expander.append(nn.Sequential(
nn.Conv1d(dim,dim,5,stride=1,padding=2,
padding_mode='replicate'),
nn.LeakyReLU(self.args.neg, True),
nn.InstanceNorm1d(dim, affine=args.INaffine),
))
self.decoder_transformer = Transformer(
in_size=self.args.hidden_size,
hidden_size=self.args.hidden_size,
num_hidden_layers=\
self.args.num_hidden_layers,
num_attention_heads=\
self.args.num_attention_heads,
intermediate_size=\
self.args.intermediate_size)
self.decoder_pos_embedding = PositionalEncoding(
self.args.hidden_size)
self.decoder_linear_embedding = LinearEmbedding(
self.args.hidden_size,
self.args.hidden_size)
self.vertice_map_reverse = nn.Linear(args.hidden_size,out_dim)
def forward(self, inputs):
dummy_mask = {'max_mask': None, 'mask_index': -1, 'mask': None}
## upsample into original length seq before passing into transformer
for i, module in enumerate(self.expander):
inputs = module(inputs)
if i > 0:
inputs = inputs.repeat_interleave(2, dim=2)
inputs = inputs.permute(0,2,1) #BLC
decoder_features = self.decoder_linear_embedding(inputs)
decoder_features = self.decoder_pos_embedding(decoder_features)
decoder_features = self.decoder_transformer((decoder_features, dummy_mask))
pred_recon = self.vertice_map_reverse(decoder_features)
return pred_recon |