File size: 9,938 Bytes
6931c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import torch.nn.functional as F

from models.lib.quantizer import VectorQuantizer
from models.lib.base_models import Transformer, LinearEmbedding, PositionalEncoding
from base import BaseModel


class VQAutoEncoder(BaseModel):
    """ VQ-GAN model """

    def __init__(self, args):
        super().__init__()
        self.encoder = TransformerEncoder(args)
        self.decoder = TransformerDecoder(args, args.in_dim)
        self.quantize = VectorQuantizer(args.n_embed,
                                        args.zquant_dim,
                                        beta=0.25)
        self.args = args



    def encode(self, x, x_a=None):
        h = self.encoder(x) ## x --> z'
        h = h.view(x.shape[0], -1, self.args.face_quan_num, self.args.zquant_dim)
        h = h.view(x.shape[0], -1, self.args.zquant_dim)
        quant, emb_loss, info = self.quantize(h) ## finds nearest quantization
        return quant, emb_loss, info


    def decode(self, quant):
        #BCL
        quant = quant.permute(0,2,1)
        quant = quant.view(quant.shape[0], -1, self.args.face_quan_num, self.args.zquant_dim).contiguous()
        quant = quant.view(quant.shape[0], -1,  self.args.face_quan_num*self.args.zquant_dim).contiguous()
        quant = quant.permute(0,2,1).contiguous()
        dec = self.decoder(quant) ## z' --> x

        return dec

    def forward(self, x, template):
        template = template.unsqueeze(1) #B,V*3 -> B, 1, V*3
        x = x - template

        ###x.shape: [B, L C]
        quant, emb_loss, info = self.encode(x)
        ### quant [B, C, L]
        dec = self.decode(quant)

        dec = dec + template
        return dec, emb_loss, info


    def sample_step(self, x, x_a=None):
        quant_z, _, info = self.encode(x, x_a)
        x_sample_det = self.decode(quant_z)
        btc = quant_z.shape[0], quant_z.shape[2], quant_z.shape[1]
        indices = info[2]
        x_sample_check = self.decode_to_img(indices, btc)
        return x_sample_det, x_sample_check

    def get_quant(self, x, x_a=None):
        quant_z, _, info = self.encode(x, x_a)
        indices = info[2]
        return quant_z, indices

    def get_distances(self, x):
        h = self.encoder(x) ## x --> z'
        d = self.quantize.get_distance(h)
        return d

    def get_quant_from_d(self, d, btc):
        min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
        x = self.decode_to_img(min_encoding_indices, btc)
        return x

    @torch.no_grad()
    def entry_to_feature(self, index, zshape):
        index = index.long()
        quant_z = self.quantize.get_codebook_entry(index.reshape(-1),
                                                   shape=None)
        quant_z = torch.reshape(quant_z, zshape)
        return quant_z



    @torch.no_grad()
    def decode_to_img(self, index, zshape):
        index = index.long()
        quant_z = self.quantize.get_codebook_entry(index.reshape(-1),
                                                   shape=None)
        quant_z = torch.reshape(quant_z, zshape).permute(0,2,1) # B L 1 -> B L C -> B C L
        x = self.decode(quant_z)
        return x

    @torch.no_grad()
    def decode_logit(self, logits, zshape):
        if logits.dim() == 3:
            probs = F.softmax(logits, dim=-1)
            _, ix = torch.topk(probs, k=1, dim=-1)
        else:
            ix = logits
        ix = torch.reshape(ix, (-1,1))
        x = self.decode_to_img(ix, zshape)
        return x

    def get_logit(self, logits, sample=True, filter_value=-float('Inf'),

                  temperature=0.7, top_p=0.9, sample_idx=None):
        """ function that samples the distribution of logits. (used in test)

        if sample_idx is None, we perform nucleus sampling

        """
        logits = logits / temperature
        sample_idx = 0
        ##########
        probs = F.softmax(logits, dim=-1) # B, N, embed_num
        if sample:
            ## multinomial sampling
            shape = probs.shape
            probs = probs.reshape(shape[0]*shape[1],shape[2])
            ix = torch.multinomial(probs, num_samples=sample_idx+1)
            probs = probs.reshape(shape[0],shape[1],shape[2])
            ix = ix.reshape(shape[0],shape[1])
        else:
            ## top 1; no sampling
            _, ix = torch.topk(probs, k=1, dim=-1)
        return ix, probs


class TransformerEncoder(nn.Module):
  """ Encoder class for VQ-VAE with Transformer backbone """

  def __init__(self, args):
    super().__init__()
    self.args = args
    size = self.args.in_dim
    dim = self.args.hidden_size
    self.vertice_mapping = nn.Sequential(nn.Linear(size,dim), nn.LeakyReLU(self.args.neg, True))
    if args.quant_factor == 0:
        layers = [nn.Sequential(
                    nn.Conv1d(dim,dim,5,stride=1,padding=2,
                                padding_mode='replicate'),
                    nn.LeakyReLU(self.args.neg, True),
                    nn.InstanceNorm1d(dim, affine=args.INaffine)
                    )]
    else:
        layers = [nn.Sequential(
                    nn.Conv1d(dim,dim,5,stride=2,padding=2,
                                padding_mode='replicate'),
                    nn.LeakyReLU(self.args.neg, True),
                    nn.InstanceNorm1d(dim, affine=args.INaffine)
                    )]
        for _ in range(1, args.quant_factor):
            layers += [nn.Sequential(
                        nn.Conv1d(dim,dim,5,stride=1,padding=2,
                                    padding_mode='replicate'),
                        nn.LeakyReLU(self.args.neg, True),
                        nn.InstanceNorm1d(dim, affine=args.INaffine),
                        nn.MaxPool1d(2)
                        )]
    self.squasher = nn.Sequential(*layers)
    self.encoder_transformer = Transformer(
        in_size=self.args.hidden_size,
        hidden_size=self.args.hidden_size,
        num_hidden_layers=\
                self.args.num_hidden_layers,
        num_attention_heads=\
                self.args.num_attention_heads,
        intermediate_size=\
                self.args.intermediate_size)
    self.encoder_pos_embedding = PositionalEncoding(
        self.args.hidden_size)
    self.encoder_linear_embedding = LinearEmbedding(
        self.args.hidden_size,
        self.args.hidden_size)

  def forward(self, inputs):
    ## downdample into path-wise length seq before passing into transformer
    dummy_mask = {'max_mask': None, 'mask_index': -1, 'mask': None}
    inputs = self.vertice_mapping(inputs)
    inputs = self.squasher(inputs.permute(0,2,1)).permute(0,2,1) # [N L C]

    encoder_features = self.encoder_linear_embedding(inputs)
    encoder_features = self.encoder_pos_embedding(encoder_features)
    encoder_features = self.encoder_transformer((encoder_features, dummy_mask))

    return encoder_features


class TransformerDecoder(nn.Module):
  """ Decoder class for VQ-VAE with Transformer backbone """

  def __init__(self, args, out_dim, is_audio=False):
    super().__init__()
    self.args = args
    size=self.args.hidden_size
    dim=self.args.hidden_size
    self.expander = nn.ModuleList()
    if args.quant_factor == 0:
        self.expander.append(nn.Sequential(
                    nn.Conv1d(size,dim,5,stride=1,padding=2,
                                padding_mode='replicate'),
                    nn.LeakyReLU(self.args.neg, True),
                    nn.InstanceNorm1d(dim, affine=args.INaffine)
                            ))
    else:
        self.expander.append(nn.Sequential(
                    nn.ConvTranspose1d(size,dim,5,stride=2,padding=2,
                                        output_padding=1,
                                        padding_mode='replicate'),
                    nn.LeakyReLU(self.args.neg, True),
                    nn.InstanceNorm1d(dim, affine=args.INaffine)
                            ))                      
        num_layers = args.quant_factor+2 \
            if is_audio else args.quant_factor

        for _ in range(1, num_layers):
            self.expander.append(nn.Sequential(
                                nn.Conv1d(dim,dim,5,stride=1,padding=2,
                                        padding_mode='replicate'),
                                nn.LeakyReLU(self.args.neg, True),
                                nn.InstanceNorm1d(dim, affine=args.INaffine),
                                ))
    self.decoder_transformer = Transformer(
        in_size=self.args.hidden_size,
        hidden_size=self.args.hidden_size,
        num_hidden_layers=\
            self.args.num_hidden_layers,
        num_attention_heads=\
            self.args.num_attention_heads,
        intermediate_size=\
            self.args.intermediate_size)
    self.decoder_pos_embedding = PositionalEncoding(
        self.args.hidden_size)
    self.decoder_linear_embedding = LinearEmbedding(
        self.args.hidden_size,
        self.args.hidden_size)

    self.vertice_map_reverse = nn.Linear(args.hidden_size,out_dim)

  def forward(self, inputs):
    dummy_mask = {'max_mask': None, 'mask_index': -1, 'mask': None}
    ## upsample into original length seq before passing into transformer
    for i, module in enumerate(self.expander):
        inputs = module(inputs)
        if i > 0:
            inputs = inputs.repeat_interleave(2, dim=2)
    inputs = inputs.permute(0,2,1) #BLC
    decoder_features = self.decoder_linear_embedding(inputs)
    decoder_features = self.decoder_pos_embedding(decoder_features)

    decoder_features = self.decoder_transformer((decoder_features, dummy_mask))
    pred_recon = self.vertice_map_reverse(decoder_features)
    return pred_recon