File size: 7,581 Bytes
6931c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
## Code adopted from Google [Li 2021]: https://google.github.io/aichoreographer/
import numpy as np
import six
import torch
import torch.nn as nn
def dropout(input_tensor, dropout_prob):
"""Perform dropout.
Args:
input_tensor: float Tensor.
dropout_prob: Python float. The probability of dropping out a value (NOT of
*keeping* a dimension as in `tf.nn.dropout`).
Returns:
A version of `input_tensor` with dropout applied.
"""
if dropout_prob is None or dropout_prob == 0.0:
return input_tensor
output = nn.Dropout(input_tensor, rate=dropout_prob)
return output
def create_look_ahead_mask(seq_length, batch_size=0):
"""Create a look ahead mask given a certain seq length.
Args:
seq_length: int the length of the sequence.
batch_size: if batch_size if provided, the mask will be repeaded.
Returns:
the mask ((batch_size), seq_length, seq_length)
"""
mask = 1 - troch.tril(torch.ones((seq_length, seq_length)))
if batch_size > 0:
mask = torch.repeat(torch.unsqueeze(mask, dim=0), batch_size, dim=0)
return mask
def create_attention_mask_from_input_mask(from_tensor, to_mask):
"""Create 3D attention mask from a 2D tensor mask.
Args:
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
Returns:
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
"""
from_shape = get_shape_list(from_tensor)
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_shape = get_shape_list(to_mask)
to_seq_length = to_shape[1]
to_mask = torch.reshape(to_mask, (batch_size, 1, to_seq_length)).float()
# We don't assume that `from_tensor` is a mask (although it could be). We
# don't actually care if we attend *from* padding tokens (only *to* padding)
# tokens so we create a tensor of all ones.
#
# `broadcast_ones` = [batch_size, from_seq_length, 1]
broadcast_ones = torch.ones(
shape=[batch_size, from_seq_length, 1]).float()
# Here we broadcast along two dimensions to create the mask.
mask = broadcast_ones * to_mask
return mask
# def create_initializer(initializer_range=0.02):
# """Creates a `truncated_normal_initializer` with the given range."""
# return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
def gelu(x):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
x: float Tensor to perform activation.
Returns:
`x` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + torch.tanh(
(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3)))))
return x * cdf
def get_activation(activation_string):
"""Maps a string to a Python function, e.g., "relu" => `tf.nn.relu`.
Args:
activation_string: String name of the activation function.
Returns:
A Python function corresponding to the activation function. If
`activation_string` is None, empty, or "linear", this will return None.
If `activation_string` is not a string, it will return `activation_string`.
Raises:
ValueError: The `activation_string` does not correspond to a known
activation.
"""
# We assume that anything that"s not a string is already an activation
# function, so we just return it.
if not isinstance(activation_string, six.string_types):
return activation_string
if not activation_string:
return None
act = activation_string.lower()
if act == "linear":
return None
elif act == "relu":
return nn.ReLU
elif act == "gelu":
return gelu
elif act == "tanh":
return torch.tanh
else:
raise ValueError("Unsupported activation: %s" % act)
def get_shape_list(tensor):
"""Returns a list of the shape of tensor, preferring static dimensions.
Args:
tensor: A tf.Tensor object to find the shape of.
Returns:
A list of dimensions of the shape of tensor. All static dimensions will
be returned as python integers, and dynamic dimensions will be returned
as tf.Tensor scalars.
"""
#shape = tensor.shape.as_list()
shape = tensor.size()
non_static_indexes = []
for (index, dim) in enumerate(shape):
if dim is None:
non_static_indexes.append(index)
if not non_static_indexes:
return shape
else:
print('something wrong with static shaping')
assert False
# dyn_shape = tf.shape(tensor)
# for index in non_static_indexes:
# shape[index] = dyn_shape[index]
# return shape
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
sequence_shape = get_shape_list(sequence_tensor)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = torch.reshape(
torch.range(0, batch_size).int() * seq_length, (-1, 1))
flat_positions = torch.reshape(positions + flat_offsets, (-1))
flat_sequence_tensor = torch.reshape(sequence_tensor,
(batch_size * seq_length, width))
output_tensor = torch.gather(flat_sequence_tensor, flat_positions)
output_tensor = torch.reshape(output_tensor, (batch_size, -1, width))
return output_tensor
def split_heads(x, batch_size, seq_length, num_joints, num_attention_heads,
model_depth):
"""Split the embedding vector for different heads for the spatial attention.
Args:
x: the embedding vector (batch_size, seq_len, num_joints, model_depth) or
(batch_size, seq_len, model_depth)
batch_size: the batch_size
seq_length: the sequence length
num_joints: the number of joints
num_attention_heads: the number of attention heads
model_depth: the model depth
Returns:
the split vector (batch_size, seq_len, num_heads, num_joints, depth) or
(batch_size, num_heads, seq_len, depth)
"""
depth = model_depth // num_attention_heads
if len(x.get_shape().as_list()) == 4:
# Input shape (batch_size, seq_len, num_joints, model_depth)
x = torch.reshape(
x, (batch_size, seq_length, num_joints, num_attention_heads, depth))
return x.permute(0, 1, 3, 2, 4)
elif len(x.get_shape().as_list()) == 3:
# Input shape (batch_size, seq_len, model_depth)
x = torch.reshape(x, (batch_size, seq_length, num_attention_heads, depth))
return x.permute(0, 2, 1, 3)
else:
raise ValueError("Unsupported input tensor dimension.")
def scaled_dot_product_attention(q, k, v, mask):
"""The scaled dot product attention mechanism.
Attn(Q, K, V) = softmax((QK^T+mask)/sqrt(depth))V.
Args:
q: the query vectors matrix (..., attn_dim, d_model/num_heads)
k: the key vector matrix (..., attn_dim, d_model/num_heads)
v: the value vector matrix (..., attn_dim, d_model/num_heads)
mask: a mask for attention
Returns:
the updated encoding and the attention weights matrix
"""
# matmul_qk = tf.matmul(
# q, k, transpose_b=True) # (..., num_heads, attn_dim, attn_dim)
matmul_qk = q @ k.transpose()
# scale matmul_qk
dk = torch.shape(k)[-1].float()
scaled_attention_logits = matmul_qk / torch.sqrt(dk)
# add the mask to the scaled tensor.
if mask is not None:
scaled_attention_logits += (mask * -1e9)
# normalized on the last axis (seq_len_k) so that the scores add up to 1.
attention_weights = nn.softmax(
scaled_attention_logits, dim=-1) # (..., num_heads, attn_dim, attn_dim)
output = attention_weights @ v # (..., num_heads, attn_dim, depth)
return output, attention_weights
|