# Borrowed from https://github.com/EvelynFan/FaceFormer/blob/main/main.py import torch import torch.nn as nn import math # Temporal Bias def init_biased_mask(n_head, max_seq_len, period): def get_slopes(n): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(n).is_integer(): return get_slopes_power_of_2(n) else: closest_power_of_2 = 2**math.floor(math.log2(n)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2] slopes = torch.Tensor(get_slopes(n_head)) bias = torch.div(torch.arange(start=0, end=max_seq_len, step=period).unsqueeze(1).repeat(1,period).view(-1), period, rounding_mode='floor') bias = - torch.flip(bias,dims=[0]) alibi = torch.zeros(max_seq_len, max_seq_len) for i in range(max_seq_len): alibi[i, :i+1] = bias[-(i+1):] alibi = slopes.unsqueeze(1).unsqueeze(1) * alibi.unsqueeze(0) mask = (torch.triu(torch.ones(max_seq_len, max_seq_len)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) mask = mask.unsqueeze(0) + alibi return mask # Alignment Bias def enc_dec_mask(device, dataset, T, S): mask = torch.ones(T, S) if dataset == "BIWI": for i in range(T): mask[i, i*2:i*2+2] = 0 elif dataset == "vocaset": for i in range(T): mask[i, i] = 0 elif dataset == "multi": for i in range(T): mask[i, i * 2:i * 2 + 2] = 0 return (mask==1).to(device=device) # Periodic Positional Encoding class PeriodicPositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, period=25, max_seq_len=600): super(PeriodicPositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(period, d_model) position = torch.arange(0, period, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # (1, period, d_model) repeat_num = (max_seq_len//period) + 1 pe = pe.repeat(1, repeat_num, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1), :] return self.dropout(x)