# Copyright (c) Meta Platforms, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import re import cv2 import sox import wget import yt_dlp import ffmpeg import pickle import tarfile import warnings import numpy as np import pandas as pd from tqdm import tqdm from skimage import transform from collections import deque from urllib.error import HTTPError def is_empty(path): return any(path.iterdir()) == False def read_txt_file(txt_filepath): with open(txt_filepath) as fin: return (line.strip() for line in fin.readlines()) def write_txt_file(lines, out_txt_filepath): with open(out_txt_filepath, "w") as fout: fout.writelines("\n".join([ln.strip() for ln in lines])) def normalize_text(text): PUNCS = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~؟؛,’‘×÷" # remove sound-effect description text = re.sub(r"\([^)]*\)", "", text) # remove punctuations text = text.translate(str.maketrans("", "", PUNCS)) # normalize case text = text.lower() return text.strip() def download_file(url, download_path): filename = url.rpartition("/")[-1] if not (download_path / filename).exists(): try: # download file print(f"Downloading {filename} from {url}") custom_bar = ( lambda current, total, width=80: wget.bar_adaptive( round(current / 1024 / 1024, 2), round(total / 1024 / 1024, 2), width, ) + " MB" ) wget.download(url, out=str(download_path / filename), bar=custom_bar) except Exception as e: message = f"Downloading {filename} failed!" raise HTTPError(e.url, e.code, message, e.hdrs, e.fp) return True def extract_tgz(tgz_filepath, extract_path, out_filename=None): if not tgz_filepath.exists(): raise FileNotFoundError(f"{tgz_filepath} is not found!!") tgz_filename = tgz_filepath.name tgz_object = tarfile.open(tgz_filepath) if not out_filename: out_filename = tgz_object.getnames()[0] # check if file is already extracted if not (extract_path / out_filename).exists(): for mem in tqdm(tgz_object.getmembers(), desc=f"Extracting {tgz_filename}"): out_filepath = extract_path / mem.get_info()["name"] if mem.isfile() and not out_filepath.exists(): tgz_object.extract(mem, path=extract_path) tgz_object.close() def download_extract_file_if_not(url, tgz_filepath, download_filename): download_path = tgz_filepath.parent if not tgz_filepath.exists(): # download file download_file(url, download_path) # extract file extract_tgz(tgz_filepath, download_path, download_filename) def load_meanface_metadata(metadata_path): mean_face_filepath = metadata_path / "20words_mean_face.npy" if not mean_face_filepath.exists(): download_file( "https://dl.fbaipublicfiles.com/muavic/metadata/20words_mean_face.npy", metadata_path, ) return np.load(mean_face_filepath) def load_video_metadata(filepath): if not filepath.exists(): # download & extract file lang_dir = filepath.parent.parent lang = lang_dir.name tgz_filepath = lang_dir.parent / f"{lang}_metadata.tgz" download_extract_file_if_not( url=f"https://dl.fbaipublicfiles.com/muavic/metadata/{lang}_metadata.tgz", tgz_filepath=tgz_filepath, download_filename=lang ) if not filepath.exists(): # file doesn't have metadata return None assert filepath.exists(), f"{filepath} should've been downloaded!" with open(filepath, "rb") as fin: metadata = pickle.load(fin) return metadata def download_video_from_youtube(download_path, yt_id): """Downloads a video from YouTube given its id on YouTube""" video_out_path = download_path / f"{yt_id}.mp4" if video_out_path.exists(): downloaded = True else: url = f"https://www.youtube.com/watch?v={yt_id}" # downloads the best `mp4` audio/video resolution. # TODO: download only video (no audio) ydl_opts = {"quiet": True, "format": "mp4", "outtmpl": str(video_out_path)} with yt_dlp.YoutubeDL(ydl_opts) as ydl: try: ydl.download([url]) downloaded = True except yt_dlp.utils.DownloadError: downloaded = False return downloaded # def save_video(frames, out_filepath, fps): # height, width, _ = frames[0].shape # writer = cv2.VideoWriter( # filename=out_filepath, # fourcc=cv2.VideoWriter_fourcc(*'mp4v'), # fps=float(fps), # frameSize=(width, height) # ) # for frame in frames: # writer.write(frame) # writer.release() def resize_frames(input_frames, new_size): resized_frames = [] for frame in input_frames: try: resized_frames.append(cv2.resize(frame, new_size)) except: pass #some frames are corrupt or missing return resized_frames def get_audio_duration(audio_filepath): return sox.file_info.duration(audio_filepath) def get_video_duration(video_filepath): try: streams = ffmpeg.probe(video_filepath)["streams"] for stream in streams: if stream["codec_type"] == "video": return float(stream["duration"]) except: warnings.warn(f"Video file: `{video_filepath}` is corrupted... skipping!!") return -1 def get_video_resolution(video_filepath): for stream in ffmpeg.probe(video_filepath)["streams"]: if stream["codec_type"] == "video": height = int(stream["height"]) width = int(stream["width"]) return height, width raise TypeError(f"Input file: {video_filepath} doesn't have video stream!") def get_audio_video_info(audio_path, video_path, fid): audio_filepath = audio_path / f"{fid}.wav" video_filepath = video_path / f"{fid}.mp4" audio_frames = ( int(get_audio_duration(audio_filepath) * 16_000) if audio_filepath.exists() else -1 ) video_frames = ( int(get_video_duration(video_filepath) * 25) if video_filepath.exists() else -1 ) return { "id": fid, "video": str(video_filepath), "audio": str(audio_filepath), "video_frames": video_frames, "audio_samples": audio_frames, } def split_video_to_frames(video_filepath, fstart=None, fend=None, out_fps=25): # src: https://github.com/kylemcdonald/python-utils/blob/master/ffmpeg.py #NOTE: splitting video into frames is faster on CPU than GPU width, height = get_video_resolution(video_filepath) video_stream = ffmpeg.input(str(video_filepath)).video.filter("fps", fps=out_fps) channels = 3 try: if fstart is not None and fend is not None: process = ( video_stream.trim(start_frame=fstart, end_frame=fend) .setpts("PTS-STARTPTS") .output("pipe:", format="rawvideo", pix_fmt="bgr24") .run_async(pipe_stdout=True, quiet=True) ) frames_counter = 0 while frames_counter < fend - fstart: in_bytes = process.stdout.read(width * height * channels) in_frame = np.frombuffer(in_bytes, np.uint8).reshape( width, height, channels ) yield in_frame frames_counter += 1 else: process = ( video_stream.setpts("PTS-STARTPTS") .output("pipe:", format="rawvideo", pix_fmt="bgr24") .run_async(pipe_stdout=True, quiet=True) ) while True: in_bytes = process.stdout.read(width * height * channels) if not in_bytes: break in_frame = np.frombuffer(in_bytes, np.uint8).reshape( width, height, channels ) yield in_frame finally: process.stdout.close() process.wait() def save_video(frames, out_filepath, fps, vcodec="libx264"): if len(frames) == 0: warnings.warn( f"Video segment `{out_filepath.stem}` has no metadata..." + " skipping!!" ) return height, width, _ = frames[0].shape process = ( ffmpeg.input( "pipe:", format="rawvideo", pix_fmt="bgr24", s="{}x{}".format(width, height) ) .output(str(out_filepath), pix_fmt="bgr24", vcodec=vcodec, r=fps) .overwrite_output() .run_async(pipe_stdin=True, quiet=True) ) for _, frame in enumerate(frames): try: process.stdin.write(frame.astype(np.uint8).tobytes()) except: print(process.stderr.read()) process.stdin.close() process.wait() def load_video(filename): cap = cv2.VideoCapture(filename) while cap.isOpened(): ret, frame = cap.read() # BGR if ret: yield frame else: break cap.release() def warp_img(src, dst, img, std_size): tform = transform.estimate_transform( "similarity", src, dst ) # find the transformation matrix warped = transform.warp( img, inverse_map=tform.inverse, output_shape=std_size ) # warp warped = warped * 255 # note output from wrap is double image (value range [0,1]) warped = warped.astype("uint8") return warped, tform def apply_transform(trans, img, std_size): warped = transform.warp(img, inverse_map=trans.inverse, output_shape=std_size) warped = warped * 255 # note output from warp is double image (value range [0,1]) warped = warped.astype("uint8") return warped def cut_patch(img, metadata, height, width, threshold=5): center_x, center_y = np.mean(metadata, axis=0) if center_y - height < 0: center_y = height if center_y - height < 0 - threshold: raise Exception("too much bias in height") if center_x - width < 0: center_x = width if center_x - width < 0 - threshold: raise Exception("too much bias in width") if center_y + height > img.shape[0]: center_y = img.shape[0] - height if center_y + height > img.shape[0] + threshold: raise Exception("too much bias in height") if center_x + width > img.shape[1]: center_x = img.shape[1] - width if center_x + width > img.shape[1] + threshold: raise Exception("too much bias in width") cutted_img = np.copy( img[ int(round(center_y) - round(height)) : int(round(center_y) + round(height)), int(round(center_x) - round(width)) : int(round(center_x) + round(width)), ] ) return cutted_img def crop_patch( video_frames, num_frames, metadata, mean_face_metadata, std_size=(256, 256), window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96, ): """Crop mouth patch""" stablePntsIDs = [33, 36, 39, 42, 45] margin = min(num_frames, window_margin) q_frame, q_metadata = deque(), deque() sequence = [] for frame_idx, frame in enumerate(video_frames): if frame_idx >= len(metadata): break #! Sadly, this is necessary q_metadata.append(metadata[frame_idx]) q_frame.append(frame) if len(q_frame) == margin: smoothed_metadata = np.mean(q_metadata, axis=0) cur_metadata = q_metadata.popleft() cur_frame = q_frame.popleft() # -- affine transformation trans_frame, trans = warp_img( smoothed_metadata[stablePntsIDs, :], mean_face_metadata[stablePntsIDs, :], cur_frame, std_size, ) trans_metadata = trans(cur_metadata) # -- crop mouth patch sequence.append( cut_patch( trans_frame, trans_metadata[start_idx:stop_idx], crop_height // 2, crop_width // 2, ) ) while q_frame: cur_frame = q_frame.popleft() # -- transform frame trans_frame = apply_transform(trans, cur_frame, std_size) # -- transform metadata trans_metadata = trans(q_metadata.popleft()) # -- crop mouth patch sequence.append( cut_patch( trans_frame, trans_metadata[start_idx:stop_idx], crop_height // 2, crop_width // 2, ) ) return sequence def read_av_manifest(tsv_filepath): with open(tsv_filepath) as fin: res = [] for ln in fin.readlines()[1:]: id_, video, audio, video_frames, audio_samples = ln.strip().split("\t") res.append( { "id": id_, "video": video, "audio": audio, "video_frames": video_frames, "audio_samples": audio_samples, } ) df = pd.DataFrame(res) df["video_frames"] = df["video_frames"].astype(int) df["audio_samples"] = df["audio_samples"].astype(int) return df def write_av_manifest(df, out_filepath): with open(out_filepath, "w") as fout: fout.write("/\n") df.to_csv(out_filepath, sep="\t", header=False, index=False, mode="a")