File size: 3,450 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange

from deep_3drecon.util.mesh_renderer import MeshRenderer
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel


class SECC_Renderer(nn.Module):
    def __init__(self, rasterize_size=None, device="cuda"):
        super().__init__()
        self.face_model = ParametricFaceModel('deep_3drecon/BFM')
        self.fov = 2 * np.arctan(self.face_model.center / self.face_model.focal) * 180 / np.pi
        self.znear = 5.
        self.zfar = 15.
        if rasterize_size is None:
            rasterize_size = 2*self.face_model.center 
        self.face_renderer = MeshRenderer(rasterize_fov=self.fov, znear=self.znear, zfar=self.zfar, rasterize_size=rasterize_size, use_opengl=False).cuda()
        face_feat = np.load("deep_3drecon/ncc_code.npy", allow_pickle=True)
        self.face_feat = torch.tensor(face_feat.T).unsqueeze(0).to(device=device)

        del_index_re = np.load('deep_3drecon/bfm_right_eye_faces.npy')
        del_index_re = del_index_re - 1
        del_index_le = np.load('deep_3drecon/bfm_left_eye_faces.npy')
        del_index_le = del_index_le - 1
        face_buf_list = []
        for i in range(self.face_model.face_buf.shape[0]):
            if i not in del_index_re and i not in del_index_le:
                face_buf_list.append(self.face_model.face_buf[i])
        face_buf_arr = np.array(face_buf_list)
        self.face_buf = torch.tensor(face_buf_arr).to(device=device)
    
    def forward(self, id, exp, euler, trans):
        """
        id, exp, euler, euler: [B, C] or [B, T, C]
        return:
            MASK: [B, 1, 512, 512], value[0. or 1.0], 1.0 denotes is face
            SECC MAP: [B, 3, 512, 512], value[0~1]
            if input is BTC format, return [B, C, T, H, W]
        """
        bs = id.shape[0]
        is_btc_flag = id.ndim == 3
        if is_btc_flag:
            t = id.shape[1]
            bs = bs * t
            id, exp, euler, trans = id.reshape([bs,-1]), exp.reshape([bs,-1]), euler.reshape([bs,-1]), trans.reshape([bs,-1])

        face_vertex = self.face_model.compute_face_vertex(id, exp, euler, trans)
        face_mask, _, secc_face = self.face_renderer(
                face_vertex, self.face_buf.unsqueeze(0).repeat([bs, 1, 1]), feat=self.face_feat.repeat([bs,1,1]))
        secc_face = (secc_face - 0.5) / 0.5 # scale to -1~1 

        if is_btc_flag:
            bs = bs // t
            face_mask = rearrange(face_mask, "(n t) c h w -> n c t h w", n=bs, t=t)
            secc_face = rearrange(secc_face, "(n t) c h w -> n c t h w", n=bs, t=t)
        return face_mask, secc_face


if __name__ == '__main__':
    import imageio

    renderer = SECC_Renderer(rasterize_size=512)
    ret = np.load("data/processed/videos/May/vid_coeff_fit.npy", allow_pickle=True).tolist()
    idx = 6
    id = torch.tensor(ret['id']).cuda()[idx:idx+1]
    exp = torch.tensor(ret['exp']).cuda()[idx:idx+1]
    angle = torch.tensor(ret['euler']).cuda()[idx:idx+1]
    trans = torch.tensor(ret['trans']).cuda()[idx:idx+1]
    mask, secc = renderer(id, exp, angle*0, trans*0) # [1, 1, 512, 512], [1, 3, 512, 512]

    out_mask = mask[0].permute(1,2,0)
    out_mask = (out_mask * 127.5 + 127.5).int().cpu().numpy()
    imageio.imwrite("out_mask.png", out_mask)
    out_img = secc[0].permute(1,2,0)
    out_img = (out_img * 127.5 + 127.5).int().cpu().numpy()
    imageio.imwrite("out_secc.png", out_img)