File size: 13,165 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import torch
import random
from utils.commons.base_task import BaseTask
from utils.commons.dataset_utils import data_loader
from utils.commons.hparams import hparams
from utils.commons.tensor_utils import tensors_to_scalars
from utils.nn.schedulers import CosineSchedule, NoneSchedule
from utils.nn.model_utils import print_arch, num_params
from utils.commons.ckpt_utils import load_ckpt
from modules.syncnet.models import LandmarkHubertSyncNet
from tasks.os_avatar.dataset_utils.syncnet_dataset import SyncNet_Dataset
from data_util.face3d_helper import Face3DHelper
class ScheduleForSyncNet(NoneSchedule):
def __init__(self, optimizer, lr):
self.optimizer = optimizer
self.constant_lr = self.lr = lr
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
self.lr = constant_lr
lr = self.lr * hparams['lr_decay_rate'] ** (num_updates // hparams['lr_decay_interval'])
# lr = max(lr, 5e-6)
lr = max(lr, 5e-5)
self.optimizer.param_groups[0]['lr'] = lr
return self.lr
class SyncNetTask(BaseTask):
def __init__(self, hparams_=None):
global hparams
if hparams_ is not None:
hparams = hparams_
self.hparams = hparams
super().__init__()
self.dataset_cls = SyncNet_Dataset
def on_train_start(self):
for n, m in self.model.named_children():
num_params(m, model_name=n)
def build_model(self):
if self.hparams is not None:
hparams = self.hparams
# lm_dim = 468*3 # lip part in idexp_lm3d
self.face3d_helper = Face3DHelper(use_gpu=False, keypoint_mode='lm68')
if hparams.get('syncnet_keypoint_mode', 'lip') == 'lip':
lm_dim = 20*3 # lip part in idexp_lm3d
elif hparams['syncnet_keypoint_mode'] == 'lm68':
lm_dim = 68*3 # lip part in idexp_lm3d
elif hparams['syncnet_keypoint_mode'] == 'centered_lip':
lm_dim = 20*3 # lip part in idexp_lm3d
elif hparams['syncnet_keypoint_mode'] == 'centered_lip2d':
lm_dim = 20*2 # lip part in idexp_lm3d
elif hparams['syncnet_keypoint_mode'] == 'lm468':
lm_dim = 468*3 # lip part in idexp_lm3d
self.face3d_helper = Face3DHelper(use_gpu=False, keypoint_mode='mediapipe')
if hparams['audio_type'] == 'hubert':
audio_dim = 1024 # hubert
elif hparams['audio_type'] == 'mfcc':
audio_dim = 13 # hubert
elif hparams['audio_type'] == 'mel':
audio_dim = 80 # hubert
self.model = LandmarkHubertSyncNet(lm_dim, audio_dim, num_layers_per_block=hparams['syncnet_num_layers_per_block'], base_hid_size=hparams['syncnet_base_hid_size'], out_dim=hparams['syncnet_out_hid_size'])
print_arch(self.model)
if hparams.get('init_from_ckpt', '') != '':
ckpt_dir = hparams.get('init_from_ckpt', '')
load_ckpt(self.model, ckpt_dir, model_name='model', strict=False)
return self.model
def build_optimizer(self, model):
if self.hparams is not None:
hparams = self.hparams
self.optimizer = optimizer = torch.optim.Adam(
model.parameters(),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']))
return optimizer
# def build_scheduler(self, optimizer):
# return CosineSchedule(optimizer, hparams['lr'], warmup_updates=0, total_updates=40_0000)
def build_scheduler(self, optimizer):
return ScheduleForSyncNet(optimizer, hparams['lr'])
@data_loader
def train_dataloader(self):
train_dataset = self.dataset_cls(prefix='train')
self.train_dl = train_dataset.get_dataloader()
return self.train_dl
@data_loader
def val_dataloader(self):
val_dataset = self.dataset_cls(prefix='val')
self.val_dl = val_dataset.get_dataloader()
return self.val_dl
@data_loader
def test_dataloader(self):
val_dataset = self.dataset_cls(prefix='val')
self.val_dl = val_dataset.get_dataloader()
return self.val_dl
##########################
# training and validation
##########################
def run_model(self, sample, infer=False, batch_size=1024):
"""
render or train on a single-frame
:param sample: a batch of data
:param infer: bool, run in infer mode
:return:
if not infer:
return losses, model_out
if infer:
return model_out
"""
if self.hparams is not None:
hparams = self.hparams
if sample is None or len(sample) == 0:
return None
model_out = {}
if 'idexp_lm3d' not in sample:
with torch.no_grad():
b,t,_ = sample['exp'].shape
idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(sample['id'], sample['exp']).reshape([b,t,-1,3])
else:
b,t,*_ = sample['idexp_lm3d'].shape
idexp_lm3d = sample['idexp_lm3d']
if hparams.get('syncnet_keypoint_mode', 'lip') == 'lip':
mouth_lm = idexp_lm3d[:,:, 48:68,:].reshape([b, t, 20*3]) # [b, t, 60]
elif hparams.get('syncnet_keypoint_mode', 'lip') == 'centered_lip':
mouth_lm = idexp_lm3d[:,:, 48:68, ].reshape([b, t, 20, 3]) # [b, t, 60]
mean_mouth_lm = self.face3d_helper.key_mean_shape[48:68]
mouth_lm = mouth_lm / 10 + mean_mouth_lm.reshape([1, 1, 20, 3]) - mean_mouth_lm.reshape([1, 1, 20, 3]).mean(dim=-2) # to center
mouth_lm = mouth_lm.reshape([b, t, 20*3]) * 10
elif hparams.get('syncnet_keypoint_mode', 'lip') == 'centered_lip2d':
mouth_lm = idexp_lm3d[:,:, 48:68, ].reshape([b, t, 20, 3]) # [b, t, 60]
mean_mouth_lm = self.face3d_helper.key_mean_shape[48:68]
mouth_lm = mouth_lm / 10 + mean_mouth_lm.reshape([1, 1, 20, 3]) - mean_mouth_lm.reshape([1, 1, 20, 3]).mean(dim=-2) # to center
mouth_lm = mouth_lm[..., :2]
mouth_lm = mouth_lm.reshape([b, t, 20*2]) * 10
elif hparams['syncnet_keypoint_mode'] == 'lm68':
mouth_lm = idexp_lm3d.reshape([b, t, 68*3])
elif hparams['syncnet_keypoint_mode'] == 'lm468':
mouth_lm = idexp_lm3d.reshape([b, t, 468*3])
if hparams['audio_type'] == 'hubert':
mel = sample['hubert'] # [b, 2t, 1024]
elif hparams['audio_type'] == 'mfcc':
mel = sample['mfcc'] / 100 # [b, 2t, 1024]
elif hparams['audio_type'] == 'mel':
mel = sample['mfcc'] # [b, 2t, 1024]
y_mask = sample['y_mask']
y_len = y_mask.sum(dim=1).min().item() # [B, T]
len_mouth_slice = 5 # 5 frames denotes 0.2s, which is a appropriate length for sync check
len_mel_slice = len_mouth_slice * 2
if infer:
phase_ratio_dict = {
'pos' : 1.0,
}
else:
phase_ratio_dict = {
'pos' : 0.4,
'neg_same_people_small_offset_ratio' : 0.3,
'neg_same_people_large_offset_ratio' : 0.2,
'neg_diff_people_random_offset_ratio': 0.1
}
mouth_lst, mel_lst, label_lst = [], [], []
for phase_key, phase_ratio in phase_ratio_dict.items():
num_samples = int(batch_size * phase_ratio)
if phase_key == 'pos':
phase_mel_lst = []
phase_mouth_lst = []
num_iters = max(1, num_samples // len(mouth_lm))
for i in range(num_iters):
t_start = random.randint(0, y_len-len_mouth_slice-1)
phase_mouth = mouth_lm[:, t_start: t_start+len_mouth_slice]
assert phase_mouth.shape[1] == len_mouth_slice
phase_mel = mel[:, t_start*2 : t_start*2+len_mel_slice]
phase_mouth_lst.append(phase_mouth)
phase_mel_lst.append(phase_mel)
phase_mouth = torch.cat(phase_mouth_lst)
phase_mel = torch.cat(phase_mel_lst)
mouth_lst.append(phase_mouth)
mel_lst.append(phase_mel)
label_lst.append(torch.ones([len(phase_mel)])) # 1 denotes pos samples
elif phase_key in ['neg_same_people_small_offset_ratio', 'neg_same_people_large_offset_ratio']:
phase_mel_lst = []
phase_mouth_lst = []
num_iters = max(1, num_samples // len(mouth_lm))
for i in range(num_iters):
if phase_key == 'neg_same_people_small_offset_ratio':
offset = random.choice([random.randint(-5,-2), random.randint(2,5)])
elif phase_key == 'neg_same_people_large_offset_ratio':
offset = random.choice([random.randint(-10,-5), random.randint(5,10)])
else: ValueError()
if offset < 0:
t_start = random.randint(-offset, y_len-len_mouth_slice-1)
else:
t_start = random.randint(0, y_len-len_mouth_slice-1-offset)
phase_mouth = mouth_lm[:, t_start: t_start+len_mouth_slice]
assert phase_mouth.shape[1] == len_mouth_slice
phase_mel = mel[:, (t_start+offset)*2:(t_start+offset)*2+len_mel_slice]
phase_mouth_lst.append(phase_mouth)
phase_mel_lst.append(phase_mel)
phase_mouth = torch.cat(phase_mouth_lst)
phase_mel = torch.cat(phase_mel_lst)
mouth_lst.append(phase_mouth)
mel_lst.append(phase_mel)
label_lst.append(torch.zeros([len(phase_mel)])) # 0 denotes neg samples
elif phase_key == 'neg_diff_people_random_offset_ratio':
phase_mel_lst = []
phase_mouth_lst = []
num_iters = max(1, num_samples // len(mouth_lm))
for i in range(num_iters):
offset = random.randint(-10, 10)
if offset < 0:
t_start = random.randint(-offset, y_len-len_mouth_slice-1)
else:
t_start = random.randint(0, y_len-len_mouth_slice-1-offset)
phase_mouth = mouth_lm[:, t_start: t_start+len_mouth_slice]
assert phase_mouth.shape[1] == len_mouth_slice
sample_idx = list(range(len(mouth_lm)))
random.shuffle(sample_idx)
phase_mel = mel[sample_idx, (t_start+offset)*2:(t_start+offset)*2+len_mel_slice]
phase_mouth_lst.append(phase_mouth)
phase_mel_lst.append(phase_mel)
phase_mouth = torch.cat(phase_mouth_lst)
phase_mel = torch.cat(phase_mel_lst)
mouth_lst.append(phase_mouth)
mel_lst.append(phase_mel)
label_lst.append(torch.zeros([len(phase_mel)])) # 0 denotes neg samples
mel_clips = torch.cat(mel_lst)
mouth_clips = torch.cat(mouth_lst)
labels = torch.cat(label_lst).float().to(mel_clips.device)
audio_embedding, mouth_embedding = self.model(mel_clips, mouth_clips)
sync_loss, cosine_sim = self.model.cal_sync_loss(audio_embedding, mouth_embedding, labels, reduction='mean')
if not infer:
losses_out = {}
model_out = {}
losses_out['sync_loss'] = sync_loss
losses_out['batch_size'] = len(mel_clips)
model_out['cosine_sim'] = cosine_sim
return losses_out, model_out
else:
model_out['sync_loss'] = sync_loss
model_out['batch_size'] = len(mel_clips)
return model_out
def _training_step(self, sample, batch_idx, optimizer_idx):
ret = self.run_model(sample, infer=False, batch_size=hparams['syncnet_num_clip_pairs'])
if ret is None:
return None
loss_output, model_out = ret
loss_weights = {}
total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad])
return total_loss, loss_output
def validation_start(self):
pass
@torch.no_grad()
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(sample, infer=False, batch_size=8000)
outputs = tensors_to_scalars(outputs)
return outputs
def validation_end(self, outputs):
return super().validation_end(outputs)
#####################
# Testing
#####################
def test_start(self):
pass
@torch.no_grad()
def test_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return:
"""
pass
def test_end(self, outputs):
pass
|