File size: 7,135 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Real3D-Portrait: One-shot Realistic 3D Talking Portrait Synthesis | ICLR 2024 Spotlight
[![arXiv](https://img.shields.io/badge/arXiv-Paper-%3CCOLOR%3E.svg)](https://arxiv.org/abs/2401.08503)| [![GitHub Stars](https://img.shields.io/github/stars/yerfor/Real3DPortrait
)](https://github.com/yerfor/Real3DPortrait) | [δΈζζζ‘£](./README-zh.md)
This is the official repo of Real3D-Portrait with Pytorch implementation, for one-shot and high video reality talking portrait synthesis. You can visit our [Demo Page](https://real3dportrait.github.io/) for watching demo videos, and read our [Paper](https://arxiv.org/pdf/2401.08503.pdf) for technical details.
<p align="center">
<br>
<img src="assets/real3dportrait.png" width="100%"/>
<br>
</p>
## π₯ Update
- \[2024.07.02\] We release the training code of the whole system, including audio-to-motion model, image-to-plane model, secc2plane model, and the secc2plane_torso model, please refer to `docs/train_models`. We also release the code to preprocess and binarize the dataset, please refer to `docs/process_data`. Thanks for your patience!
## You may also interested in
- We release the code of GeneFace++, ([https://github.com/yerfor/GeneFacePlusPlus](https://github.com/yerfor/GeneFacePlusPlus)), a NeRF-based person-specific talking face system, which aims at producing high-quality talking face videos with extreme idenetity-similarity of the target person.
# Quick Start!
## Environment Installation
Please refer to [Installation Guide](docs/prepare_env/install_guide.md), prepare a Conda environment `real3dportrait`.
## Download Pre-trained & Third-Party Models
### 3DMM BFM Model
Download 3DMM BFM Model from [Google Drive](https://drive.google.com/drive/folders/1o4t5YIw7w4cMUN4bgU9nPf6IyWVG1bEk?usp=sharing) or [BaiduYun Disk](https://pan.baidu.com/s/1aqv1z_qZ23Vp2VP4uxxblQ?pwd=m9q5 ) with Password m9q5.
Put all the files in `deep_3drecon/BFM`, the file structure will be like this:
```
deep_3drecon/BFM/
βββ 01_MorphableModel.mat
βββ BFM_exp_idx.mat
βββ BFM_front_idx.mat
βββ BFM_model_front.mat
βββ Exp_Pca.bin
βββ facemodel_info.mat
βββ index_mp468_from_mesh35709.npy
βββ mediapipe_in_bfm53201.npy
βββ std_exp.txt
```
### Pre-trained Real3D-Portrait
Download Pre-trained Real3D-PortraitοΌ[Google Drive](https://drive.google.com/drive/folders/1MAveJf7RvJ-Opg1f5qhLdoRoC_Gc6nD9?usp=sharing) or [BaiduYun Disk](https://pan.baidu.com/s/1Mjmbn0UtA1Zm9owZ7zWNgQ?pwd=6x4f ) with Password 6x4f
Put the zip files in `checkpoints` and unzip them, the file structure will be like this:
```
checkpoints/
βββ 240210_real3dportrait_orig
β βββ audio2secc_vae
β β βββ config.yaml
β β βββ model_ckpt_steps_400000.ckpt
β βββ secc2plane_torso_orig
β βββ config.yaml
β βββ model_ckpt_steps_100000.ckpt
βββ pretrained_ckpts
βββ mit_b0.pth
```
## Inference
Currently, we provide **CLI**, **Gradio WebUI** and **Google Colab** for inference. We support both Audio-Driven and Video-Driven methods:
- For audio-driven, at least prepare `source image` and `driving audio`
- For video-driven, at least prepare `source image` and `driving expression video`
### Gradio WebUI
Run Gradio WebUI demo, upload resouces in webpageοΌclick `Generate` button to inferenceοΌ
```bash
python inference/app_real3dportrait.py
```
### Google Colab
Run all the cells in this [Colab](https://colab.research.google.com/github/yerfor/Real3DPortrait/blob/main/inference/real3dportrait_demo.ipynb).
### CLI Inference
Firstly, switch to project folder and activate conda environment:
```bash
cd <Real3DPortraitRoot>
conda activate real3dportrait
export PYTHONPATH=./
```
For audio-driven, provide source image and driving audio:
```bash
python inference/real3d_infer.py \
--src_img <PATH_TO_SOURCE_IMAGE> \
--drv_aud <PATH_TO_AUDIO> \
--drv_pose <PATH_TO_POSE_VIDEO, OPTIONAL> \
--bg_img <PATH_TO_BACKGROUND_IMAGE, OPTIONAL> \
--out_name <PATH_TO_OUTPUT_VIDEO, OPTIONAL>
```
For video-driven, provide source image and driving expression video(as `--drv_aud` parameter):
```bash
python inference/real3d_infer.py \
--src_img <PATH_TO_SOURCE_IMAGE> \
--drv_aud <PATH_TO_EXP_VIDEO> \
--drv_pose <PATH_TO_POSE_VIDEO, OPTIONAL> \
--bg_img <PATH_TO_BACKGROUND_IMAGE, OPTIONAL> \
--out_name <PATH_TO_OUTPUT_VIDEO, OPTIONAL>
```
Some optional parametersοΌ
- `--drv_pose` provide motion pose information, default to be static poses
- `--bg_img` provide background information, default to be image extracted from source
- `--mouth_amp` mouth amplitude, higher value leads to wider mouth
- `--map_to_init_pose` when set to `True`, the initial pose will be mapped to source pose, and other poses will be equally transformed
- `--temperature` stands for the sampling temperature of audio2motion, higher for more diverse results at the expense of lower accuracy
- `--out_name` When not assigned, the results will be stored at `infer_out/tmp/`.
- `--out_mode` When `final`, only outputs the final result; when `concat_debug`, also outputs visualization of several intermediate process.
Commandline example:
```bash
python inference/real3d_infer.py \
--src_img data/raw/examples/Macron.png \
--drv_aud data/raw/examples/Obama_5s.wav \
--drv_pose data/raw/examples/May_5s.mp4 \
--bg_img data/raw/examples/bg.png \
--out_name output.mp4 \
--out_mode concat_debug
```
# ToDo
- [x] **Release Pre-trained weights of Real3D-Portrait.**
- [x] **Release Inference Code of Real3D-Portrait.**
- [x] **Release Gradio Demo of Real3D-Portrait..**
- [x] **Release Google Colab of Real3D-Portrait..**
- [ ] **Release Training Code of Real3D-Portrait.**
# Disclaimer
Any organization or individual is prohibited from using any technology mentioned in this paper to generate someone's talking video without his/her consent, including but not limited to government leaders, political figures, and celebrities. If you do not comply with this item, you could be in violation of copyright laws.
# Citation
If you found this repo helpful to your work, please consider cite us:
```
@article{ye2024real3d,
title={Real3D-Portrait: One-shot Realistic 3D Talking Portrait Synthesis},
author={Ye, Zhenhui and Zhong, Tianyun and Ren, Yi and Yang, Jiaqi and Li, Weichuang and Huang, Jiawei and Jiang, Ziyue and He, Jinzheng and Huang, Rongjie and Liu, Jinglin and others},
journal={arXiv preprint arXiv:2401.08503},
year={2024}
}
@article{ye2023geneface++,
title={GeneFace++: Generalized and Stable Real-Time Audio-Driven 3D Talking Face Generation},
author={Ye, Zhenhui and He, Jinzheng and Jiang, Ziyue and Huang, Rongjie and Huang, Jiawei and Liu, Jinglin and Ren, Yi and Yin, Xiang and Ma, Zejun and Zhao, Zhou},
journal={arXiv preprint arXiv:2305.00787},
year={2023}
}
@article{ye2023geneface,
title={GeneFace: Generalized and High-Fidelity Audio-Driven 3D Talking Face Synthesis},
author={Ye, Zhenhui and Jiang, Ziyue and Ren, Yi and Liu, Jinglin and He, Jinzheng and Zhao, Zhou},
journal={arXiv preprint arXiv:2301.13430},
year={2023}
}
```
|