File size: 7,806 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import cv2
import torch
from utils.commons.image_utils import dilate, erode
from sklearn.neighbors import NearestNeighbors
import copy
import numpy as np
from utils.commons.meters import Timer

def hold_eye_opened_for_secc(img):
    img = img.permute(1,2,0).cpu().numpy()
    img = ((img +1)/2*255).astype(np.uint)
    face_mask = (img[...,0] != 0) & (img[...,1] != 0) & (img[...,2] != 0)
    face_xys = np.stack(np.nonzero(face_mask)).transpose(1, 0) # [N_nonbg,2] coordinate of non-face pixels
    h,w = face_mask.shape
    # get face and eye mask
    left_eye_prior_reigon = np.zeros([h,w], dtype=bool)
    right_eye_prior_reigon = np.zeros([h,w], dtype=bool)
    left_eye_prior_reigon[h//4:h//2, w//4:w//2] = True
    right_eye_prior_reigon[h//4:h//2, w//2:w//4*3] = True
    eye_prior_reigon = left_eye_prior_reigon | right_eye_prior_reigon
    coarse_eye_mask = (~ face_mask) & eye_prior_reigon
    coarse_eye_xys = np.stack(np.nonzero(coarse_eye_mask)).transpose(1, 0) # [N_nonbg,2] coordinate of non-face pixels

    opened_eye_mask = cv2.imread('inference/os_avatar/opened_eye_mask.png')
    opened_eye_mask = torch.nn.functional.interpolate(torch.tensor(opened_eye_mask).permute(2,0,1).unsqueeze(0), size=(img.shape[0], img.shape[1]), mode='nearest')[0].permute(1,2,0).sum(-1).bool().cpu() # [512,512,3]
    coarse_opened_eye_xys = np.stack(np.nonzero(opened_eye_mask)) # [N_nonbg,2] coordinate of non-face pixels
    
    nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(coarse_eye_xys)
    dists, _ = nbrs.kneighbors(coarse_opened_eye_xys) # [512*512, 1] distance to nearest non-bg pixel
    # print(dists.max())
    non_opened_eye_pixs = dists > max(dists.max()*0.75, 4) # 大于这个距离的opened eye部分会被合上
    non_opened_eye_pixs = non_opened_eye_pixs.reshape([-1])
    opened_eye_xys_to_erode = coarse_opened_eye_xys[non_opened_eye_pixs]
    opened_eye_mask[opened_eye_xys_to_erode[...,0], opened_eye_xys_to_erode[...,1]] = False # shrink 将mask在face-eye边界收缩3pixel,为了平滑

    img[opened_eye_mask] = 0
    return torch.tensor(img.astype(np.float32) / 127.5 - 1).permute(2,0,1)
    

# def hold_eye_opened_for_secc(img):
#     img = copy.copy(img)
#     eye_mask = cv2.imread('inference/os_avatar/opened_eye_mask.png')
#     eye_mask = torch.nn.functional.interpolate(torch.tensor(eye_mask).permute(2,0,1).unsqueeze(0), size=(img.shape[-2], img.shape[-1]), mode='nearest')[0].bool().to(img.device) # [3,512,512]
#     img[eye_mask] = -1
#     return img
    
def blink_eye_for_secc(img, close_eye_percent=0.5):
    """
    secc_img: [3,h,w], tensor, -1~1
    """
    img = img.permute(1,2,0).cpu().numpy()
    img = ((img +1)/2*255).astype(np.uint)
    assert close_eye_percent <= 1.0 and close_eye_percent >= 0.
    if close_eye_percent == 0: return torch.tensor(img.astype(np.float32) / 127.5 - 1).permute(2,0,1)
    img = copy.deepcopy(img)
    face_mask = (img[...,0] != 0) & (img[...,1] != 0) & (img[...,2] != 0)
    h,w = face_mask.shape

    # get face and eye mask
    left_eye_prior_reigon = np.zeros([h,w], dtype=bool)
    right_eye_prior_reigon = np.zeros([h,w], dtype=bool)
    left_eye_prior_reigon[h//4:h//2, w//4:w//2] = True
    right_eye_prior_reigon[h//4:h//2, w//2:w//4*3] = True
    eye_prior_reigon = left_eye_prior_reigon | right_eye_prior_reigon
    coarse_eye_mask = (~ face_mask) & eye_prior_reigon
    coarse_left_eye_mask = (~ face_mask) & left_eye_prior_reigon
    coarse_right_eye_mask = (~ face_mask) & right_eye_prior_reigon
    coarse_eye_xys = np.stack(np.nonzero(coarse_eye_mask)).transpose(1, 0) # [N_nonbg,2] coordinate of non-face pixels
    min_h = coarse_eye_xys[:, 0].min()
    max_h = coarse_eye_xys[:, 0].max()
    coarse_left_eye_xys = np.stack(np.nonzero(coarse_left_eye_mask)).transpose(1, 0) # [N_nonbg,2] coordinate of non-face pixels
    left_min_w = coarse_left_eye_xys[:, 1].min()
    left_max_w = coarse_left_eye_xys[:, 1].max()
    coarse_right_eye_xys = np.stack(np.nonzero(coarse_right_eye_mask)).transpose(1, 0) # [N_nonbg,2] coordinate of non-face pixels
    right_min_w = coarse_right_eye_xys[:, 1].min()
    right_max_w = coarse_right_eye_xys[:, 1].max()

    # 尽力较少需要考虑的face_xyz,以降低KNN的损耗
    left_eye_prior_reigon = np.zeros([h,w], dtype=bool)
    more_room = 4 # 过小会导致一些问题
    left_eye_prior_reigon[min_h-more_room:max_h+more_room, left_min_w-more_room:left_max_w+more_room] = True
    right_eye_prior_reigon = np.zeros([h,w], dtype=bool)
    right_eye_prior_reigon[min_h-more_room:max_h+more_room, right_min_w-more_room:right_max_w+more_room] = True
    eye_prior_reigon = left_eye_prior_reigon | right_eye_prior_reigon

    around_eye_face_mask = face_mask & eye_prior_reigon
    face_mask = around_eye_face_mask
    face_xys = np.stack(np.nonzero(around_eye_face_mask)).transpose(1, 0) # [N_nonbg,2] coordinate of non-face pixels

    nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(coarse_eye_xys)
    dists, _ = nbrs.kneighbors(face_xys) # [512*512, 1] distance to nearest non-bg pixel
    face_pixs = dists > 5 # 只有距离最近的eye pixel大于5的才被认为是face,过小会导致一些问题
    face_pixs = face_pixs.reshape([-1])
    face_xys_to_erode = face_xys[~face_pixs]
    face_mask[face_xys_to_erode[...,0], face_xys_to_erode[...,1]] = False # shrink 将mask在face-eye边界收缩3pixel,为了平滑
    eye_mask = (~ face_mask) & eye_prior_reigon

    h_grid = np.mgrid[0:h, 0:w][0]
    eye_num_pixel_along_w_axis = eye_mask.sum(axis=0)
    eye_mask_along_w_axis = eye_num_pixel_along_w_axis != 0

    tmp_h_grid = h_grid.copy()
    tmp_h_grid[~eye_mask] = 0
    eye_mean_h_coord_along_w_axis = tmp_h_grid.sum(axis=0) / np.clip(eye_num_pixel_along_w_axis, a_min=1, a_max=h)
    tmp_h_grid = h_grid.copy()
    tmp_h_grid[~eye_mask] = 99999
    eye_min_h_coord_along_w_axis = tmp_h_grid.min(axis=0)
    tmp_h_grid = h_grid.copy()
    tmp_h_grid[~eye_mask] = -99999
    eye_max_h_coord_along_w_axis = tmp_h_grid.max(axis=0)

    eye_low_h_coord_along_w_axis = close_eye_percent * eye_mean_h_coord_along_w_axis + (1-close_eye_percent) * eye_min_h_coord_along_w_axis # upper eye 
    eye_high_h_coord_along_w_axis = close_eye_percent * eye_mean_h_coord_along_w_axis + (1-close_eye_percent) * eye_max_h_coord_along_w_axis # lower eye 

    tmp_h_grid = h_grid.copy()
    tmp_h_grid[~eye_mask] = 99999
    upper_eye_blink_mask = tmp_h_grid <= eye_low_h_coord_along_w_axis
    tmp_h_grid = h_grid.copy()
    tmp_h_grid[~eye_mask] = -99999
    lower_eye_blink_mask = tmp_h_grid >= eye_high_h_coord_along_w_axis
    eye_blink_mask = upper_eye_blink_mask | lower_eye_blink_mask

    face_xys = np.stack(np.nonzero(around_eye_face_mask)).transpose(1, 0) # [N_nonbg,2] coordinate of non-face pixels
    eye_blink_xys = np.stack(np.nonzero(eye_blink_mask)).transpose(1, 0) # [N_nonbg,hw] coordinate of non-face pixels
    nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(face_xys)
    distances, indices = nbrs.kneighbors(eye_blink_xys)
    bg_fg_xys = face_xys[indices[:, 0]]
    img[eye_blink_xys[:, 0], eye_blink_xys[:, 1], :] = img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :]
    return torch.tensor(img.astype(np.float32) / 127.5 - 1).permute(2,0,1)


if __name__ == '__main__':
    import imageio
    import tqdm
    img = cv2.imread("assets/cano_secc.png")
    img = img / 127.5 - 1
    img = torch.FloatTensor(img).permute(2, 0, 1)
    fps = 25
    writer = imageio.get_writer('demo_blink.mp4', fps=fps)

    for i in tqdm.trange(33):
        blink_percent = 0.03 * i
        with Timer("Blink", True):
            out_img = blink_eye_for_secc(img, blink_percent)
        out_img = ((out_img.permute(1,2,0)+1)*127.5).int().numpy()
        writer.append_data(out_img)
    writer.close()