File size: 21,824 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import numpy as np
from typing import Optional, Tuple


class ScaledDotProductAttention(nn.Module):
    """
    Scaled Dot-Product Attention proposed in "Attention Is All You Need"
    Compute the dot products of the query with all keys, divide each by sqrt(dim),
    and apply a softmax function to obtain the weights on the values
    Args: dim, mask
        dim (int): dimention of attention
        mask (torch.Tensor): tensor containing indices to be masked
    Inputs: query, key, value, mask
        - **query** (batch, q_len, d_model): tensor containing projection vector for decoder.
        - **key** (batch, k_len, d_model): tensor containing projection vector for encoder.
        - **value** (batch, v_len, d_model): tensor containing features of the encoded input sequence.
        - **mask** (-): tensor containing indices to be masked
    Returns: context, attn
        - **context**: tensor containing the context vector from attention mechanism.
        - **attn**: tensor containing the attention (alignment) from the encoder outputs.
    """
    def __init__(self, dim: int):
        super(ScaledDotProductAttention, self).__init__()
        self.sqrt_dim = np.sqrt(dim)

    def forward(self, query: Tensor, key: Tensor, value: Tensor, mask: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
        score = torch.bmm(query, key.transpose(1, 2)) / self.sqrt_dim

        if mask is not None:
            score.masked_fill_(mask.view(score.size()), -float('Inf'))

        attn = F.softmax(score, -1)
        context = torch.bmm(attn, value)
        return context, attn


class DotProductAttention(nn.Module):
    """
    Compute the dot products of the query with all values and apply a softmax function to obtain the weights on the values
    """
    def __init__(self, hidden_dim):
        super(DotProductAttention, self).__init__()

    def forward(self, query: Tensor, value: Tensor) -> Tuple[Tensor, Tensor]:
        batch_size, hidden_dim, input_size = query.size(0), query.size(2), value.size(1)

        score = torch.bmm(query, value.transpose(1, 2))
        attn = F.softmax(score.view(-1, input_size), dim=1).view(batch_size, -1, input_size)
        context = torch.bmm(attn, value)

        return context, attn


class AdditiveAttention(nn.Module):
    """
     Applies a additive attention (bahdanau) mechanism on the output features from the decoder.
     Additive attention proposed in "Neural Machine Translation by Jointly Learning to Align and Translate" paper.
     Args:
         hidden_dim (int): dimesion of hidden state vector
     Inputs: query, value
         - **query** (batch_size, q_len, hidden_dim): tensor containing the output features from the decoder.
         - **value** (batch_size, v_len, hidden_dim): tensor containing features of the encoded input sequence.
     Returns: context, attn
         - **context**: tensor containing the context vector from attention mechanism.
         - **attn**: tensor containing the alignment from the encoder outputs.
     Reference:
         - **Neural Machine Translation by Jointly Learning to Align and Translate**: https://arxiv.org/abs/1409.0473
    """
    def __init__(self, hidden_dim: int) -> None:
        super(AdditiveAttention, self).__init__()
        self.query_proj = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.key_proj = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.bias = nn.Parameter(torch.rand(hidden_dim).uniform_(-0.1, 0.1))
        self.score_proj = nn.Linear(hidden_dim, 1)

    def forward(self, query: Tensor, key: Tensor, value: Tensor) -> Tuple[Tensor, Tensor]:
        score = self.score_proj(torch.tanh(self.key_proj(key) + self.query_proj(query) + self.bias)).squeeze(-1)
        attn = F.softmax(score, dim=-1)
        context = torch.bmm(attn.unsqueeze(1), value)
        return context, attn


class LocationAwareAttention(nn.Module):
    """
    Applies a location-aware attention mechanism on the output features from the decoder.
    Location-aware attention proposed in "Attention-Based Models for Speech Recognition" paper.
    The location-aware attention mechanism is performing well in speech recognition tasks.
    We refer to implementation of ClovaCall Attention style.
    Args:
        hidden_dim (int): dimesion of hidden state vector
        smoothing (bool): flag indication whether to use smoothing or not.
    Inputs: query, value, last_attn, smoothing
        - **query** (batch, q_len, hidden_dim): tensor containing the output features from the decoder.
        - **value** (batch, v_len, hidden_dim): tensor containing features of the encoded input sequence.
        - **last_attn** (batch_size * num_heads, v_len): tensor containing previous timestep`s attention (alignment)
    Returns: output, attn
        - **output** (batch, output_len, dimensions): tensor containing the feature from encoder outputs
        - **attn** (batch * num_heads, v_len): tensor containing the attention (alignment) from the encoder outputs.
    Reference:
        - **Attention-Based Models for Speech Recognition**: https://arxiv.org/abs/1506.07503
        - **ClovaCall**: https://github.com/clovaai/ClovaCall/blob/master/las.pytorch/models/attention.py
    """
    def __init__(self, hidden_dim: int, smoothing: bool = True) -> None:
        super(LocationAwareAttention, self).__init__()
        self.hidden_dim = hidden_dim
        self.conv1d = nn.Conv1d(in_channels=1, out_channels=hidden_dim, kernel_size=3, padding=1)
        self.query_proj = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.value_proj = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.score_proj = nn.Linear(hidden_dim, 1, bias=True)
        self.bias = nn.Parameter(torch.rand(hidden_dim).uniform_(-0.1, 0.1))
        self.smoothing = smoothing

    def forward(self, query: Tensor, value: Tensor, last_attn: Tensor) -> Tuple[Tensor, Tensor]:
        batch_size, hidden_dim, seq_len = query.size(0), query.size(2), value.size(1)

        # Initialize previous attention (alignment) to zeros
        if last_attn is None:
            last_attn = value.new_zeros(batch_size, seq_len)

        conv_attn = torch.transpose(self.conv1d(last_attn.unsqueeze(1)), 1, 2)
        score = self.score_proj(torch.tanh(
                self.query_proj(query.reshape(-1, hidden_dim)).view(batch_size, -1, hidden_dim)
                + self.value_proj(value.reshape(-1, hidden_dim)).view(batch_size, -1, hidden_dim)
                + conv_attn
                + self.bias
        )).squeeze(dim=-1)

        if self.smoothing:
            score = torch.sigmoid(score)
            attn = torch.div(score, score.sum(dim=-1).unsqueeze(dim=-1))
        else:
            attn = F.softmax(score, dim=-1)

        context = torch.bmm(attn.unsqueeze(dim=1), value).squeeze(dim=1)  # Bx1xT X BxTxD => Bx1xD => BxD

        return context, attn


class MultiHeadLocationAwareAttention(nn.Module):
    """
    Applies a multi-headed location-aware attention mechanism on the output features from the decoder.
    Location-aware attention proposed in "Attention-Based Models for Speech Recognition" paper.
    The location-aware attention mechanism is performing well in speech recognition tasks.
    In the above paper applied a signle head, but we applied multi head concept.
    Args:
        hidden_dim (int): The number of expected features in the output
        num_heads (int): The number of heads. (default: )
        conv_out_channel (int): The number of out channel in convolution
    Inputs: query, value, prev_attn
        - **query** (batch, q_len, hidden_dim): tensor containing the output features from the decoder.
        - **value** (batch, v_len, hidden_dim): tensor containing features of the encoded input sequence.
        - **prev_attn** (batch_size * num_heads, v_len): tensor containing previous timestep`s attention (alignment)
    Returns: output, attn
        - **output** (batch, output_len, dimensions): tensor containing the feature from encoder outputs
        - **attn** (batch * num_heads, v_len): tensor containing the attention (alignment) from the encoder outputs.
    Reference:
        - **Attention Is All You Need**: https://arxiv.org/abs/1706.03762
        - **Attention-Based Models for Speech Recognition**: https://arxiv.org/abs/1506.07503
    """
    def __init__(self, hidden_dim: int, num_heads: int = 8, conv_out_channel: int = 10) -> None:
        super(MultiHeadLocationAwareAttention, self).__init__()
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        self.dim = int(hidden_dim / num_heads)
        self.conv1d = nn.Conv1d(num_heads, conv_out_channel, kernel_size=3, padding=1)
        self.loc_proj = nn.Linear(conv_out_channel, self.dim, bias=False)
        self.query_proj = nn.Linear(hidden_dim, self.dim * num_heads, bias=False)
        self.value_proj = nn.Linear(hidden_dim, self.dim * num_heads, bias=False)
        self.score_proj = nn.Linear(self.dim, 1, bias=True)
        self.bias = nn.Parameter(torch.rand(self.dim).uniform_(-0.1, 0.1))

    def forward(self, query: Tensor, value: Tensor, last_attn: Tensor) -> Tuple[Tensor, Tensor]:
        batch_size, seq_len = value.size(0), value.size(1)

        if last_attn is None:
            last_attn = value.new_zeros(batch_size, self.num_heads, seq_len)

        loc_energy = torch.tanh(self.loc_proj(self.conv1d(last_attn).transpose(1, 2)))
        loc_energy = loc_energy.unsqueeze(1).repeat(1, self.num_heads, 1, 1).view(-1, seq_len, self.dim)

        query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.dim).permute(0, 2, 1, 3)
        value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.dim).permute(0, 2, 1, 3)
        query = query.contiguous().view(-1, 1, self.dim)
        value = value.contiguous().view(-1, seq_len, self.dim)

        score = self.score_proj(torch.tanh(value + query + loc_energy + self.bias)).squeeze(2)
        attn = F.softmax(score, dim=1)

        value = value.view(batch_size, seq_len, self.num_heads, self.dim).permute(0, 2, 1, 3)
        value = value.contiguous().view(-1, seq_len, self.dim)

        context = torch.bmm(attn.unsqueeze(1), value).view(batch_size, -1, self.num_heads * self.dim)
        attn = attn.view(batch_size, self.num_heads, -1)

        return context, attn


class MultiHeadAttention(nn.Module):
    """
    Multi-Head Attention proposed in "Attention Is All You Need"
    Instead of performing a single attention function with d_model-dimensional keys, values, and queries,
    project the queries, keys and values h times with different, learned linear projections to d_head dimensions.
    These are concatenated and once again projected, resulting in the final values.
    Multi-head attention allows the model to jointly attend to information from different representation
    subspaces at different positions.
    MultiHead(Q, K, V) = Concat(head_1, ..., head_h) 路 W_o
        where head_i = Attention(Q 路 W_q, K 路 W_k, V 路 W_v)
    Args:
        d_model (int): The dimension of keys / values / quries (default: 512)
        num_heads (int): The number of attention heads. (default: 8)
    Inputs: query, key, value, mask
        - **query** (batch, q_len, d_model): In transformer, three different ways:
            Case 1: come from previoys decoder layer
            Case 2: come from the input embedding
            Case 3: come from the output embedding (masked)
        - **key** (batch, k_len, d_model): In transformer, three different ways:
            Case 1: come from the output of the encoder
            Case 2: come from the input embeddings
            Case 3: come from the output embedding (masked)
        - **value** (batch, v_len, d_model): In transformer, three different ways:
            Case 1: come from the output of the encoder
            Case 2: come from the input embeddings
            Case 3: come from the output embedding (masked)
        - **mask** (-): tensor containing indices to be masked
    Returns: output, attn
        - **output** (batch, output_len, dimensions): tensor containing the attended output features.
        - **attn** (batch * num_heads, v_len): tensor containing the attention (alignment) from the encoder outputs.
    """
    def __init__(self, d_model: int = 512, num_heads: int = 8):
        super(MultiHeadAttention, self).__init__()

        assert d_model % num_heads == 0, "d_model % num_heads should be zero."

        self.d_head = int(d_model / num_heads)
        self.num_heads = num_heads
        self.scaled_dot_attn = ScaledDotProductAttention(self.d_head)
        self.query_proj = nn.Linear(d_model, self.d_head * num_heads)
        self.key_proj = nn.Linear(d_model, self.d_head * num_heads)
        self.value_proj = nn.Linear(d_model, self.d_head * num_heads)

    def forward(
            self,
            query: Tensor,
            key: Tensor,
            value: Tensor,
            mask: Optional[Tensor] = None
    ) -> Tuple[Tensor, Tensor]:
        batch_size = value.size(0)

        query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)  # BxQ_LENxNxD
        key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head)      # BxK_LENxNxD
        value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head)  # BxV_LENxNxD

        query = query.permute(2, 0, 1, 3).contiguous().view(batch_size * self.num_heads, -1, self.d_head)  # BNxQ_LENxD
        key = key.permute(2, 0, 1, 3).contiguous().view(batch_size * self.num_heads, -1, self.d_head)      # BNxK_LENxD
        value = value.permute(2, 0, 1, 3).contiguous().view(batch_size * self.num_heads, -1, self.d_head)  # BNxV_LENxD

        if mask is not None:
            mask = mask.unsqueeze(1).repeat(1, self.num_heads, 1, 1)  # BxNxQ_LENxK_LEN

        context, attn = self.scaled_dot_attn(query, key, value, mask)

        context = context.view(self.num_heads, batch_size, -1, self.d_head)
        context = context.permute(1, 2, 0, 3).contiguous().view(batch_size, -1, self.num_heads * self.d_head)  # BxTxND

        return context, attn


class RelativeMultiHeadAttention(nn.Module):
    """
    Multi-head attention with relative positional encoding.
    This concept was proposed in the "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
    Args:
        d_model (int): The dimension of model
        num_heads (int): The number of attention heads.
        dropout_p (float): probability of dropout
    Inputs: query, key, value, pos_embedding, mask
        - **query** (batch, time, dim): Tensor containing query vector
        - **key** (batch, time, dim): Tensor containing key vector
        - **value** (batch, time, dim): Tensor containing value vector
        - **pos_embedding** (batch, time, dim): Positional embedding tensor
        - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
    Returns:
        - **outputs**: Tensor produces by relative multi head attention module.
    """
    def __init__(
            self,
            d_model: int = 512,
            num_heads: int = 16,
            dropout_p: float = 0.1,
    ):
        super(RelativeMultiHeadAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model % num_heads should be zero."
        self.d_model = d_model
        self.d_head = int(d_model / num_heads)
        self.num_heads = num_heads
        self.sqrt_dim = math.sqrt(d_model)

        self.query_proj = nn.Linear(d_model, d_model)
        self.key_proj = nn.Linear(d_model, d_model)
        self.value_proj = nn.Linear(d_model, d_model)
        self.pos_proj = nn.Linear(d_model, d_model, bias=False)

        self.dropout = nn.Dropout(p=dropout_p)
        self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
        self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
        torch.nn.init.xavier_uniform_(self.u_bias)
        torch.nn.init.xavier_uniform_(self.v_bias)

        self.out_proj = nn.Linear(d_model, d_model)

    def forward(
            self,
            query: Tensor,
            key: Tensor,
            value: Tensor,
            pos_embedding: Tensor,
            mask: Optional[Tensor] = None,
    ) -> Tensor:
        batch_size = value.size(0)

        query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
        key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
        value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
        pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head)

        content_score = torch.matmul((query + self.u_bias).transpose(1, 2), key.transpose(2, 3))
        pos_score = torch.matmul((query + self.v_bias).transpose(1, 2), pos_embedding.permute(0, 2, 3, 1))
        pos_score = self._compute_relative_positional_encoding(pos_score)

        score = (content_score + pos_score) / self.sqrt_dim

        if mask is not None:
            mask = mask.unsqueeze(1)
            score.masked_fill_(mask, -1e9)

        attn = F.softmax(score, -1)
        attn = self.dropout(attn)

        context = torch.matmul(attn, value).transpose(1, 2)
        context = context.contiguous().view(batch_size, -1, self.d_model)

        return self.out_proj(context)

    def _compute_relative_positional_encoding(self, pos_score: Tensor) -> Tensor:
        batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
        zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
        padded_pos_score = torch.cat([zeros, pos_score], dim=-1)

        padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1)
        pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)

        return pos_score


class CustomizingAttention(nn.Module):
    r"""
    Customizing Attention
    Applies a multi-head + location-aware attention mechanism on the output features from the decoder.
    Multi-head attention proposed in "Attention Is All You Need" paper.
    Location-aware attention proposed in "Attention-Based Models for Speech Recognition" paper.
    I combined these two attention mechanisms as custom.
    Args:
        hidden_dim (int): The number of expected features in the output
        num_heads (int): The number of heads. (default: )
        conv_out_channel (int): The dimension of convolution
    Inputs: query, value, last_attn
        - **query** (batch, q_len, hidden_dim): tensor containing the output features from the decoder.
        - **value** (batch, v_len, hidden_dim): tensor containing features of the encoded input sequence.
        - **last_attn** (batch_size * num_heads, v_len): tensor containing previous timestep`s alignment
    Returns: output, attn
        - **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder.
        - **attn** (batch * num_heads, v_len): tensor containing the alignment from the encoder outputs.
    Reference:
        - **Attention Is All You Need**: https://arxiv.org/abs/1706.03762
        - **Attention-Based Models for Speech Recognition**: https://arxiv.org/abs/1506.07503
    """

    def __init__(self, hidden_dim: int, num_heads: int = 4, conv_out_channel: int = 10) -> None:
        super(CustomizingAttention, self).__init__()
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        self.dim = int(hidden_dim / num_heads)
        self.scaled_dot_attn = ScaledDotProductAttention(self.dim)
        self.conv1d = nn.Conv1d(1, conv_out_channel, kernel_size=3, padding=1)
        self.query_proj = nn.Linear(hidden_dim, self.dim * num_heads, bias=True)
        self.value_proj = nn.Linear(hidden_dim, self.dim * num_heads, bias=False)
        self.loc_proj = nn.Linear(conv_out_channel, self.dim, bias=False)
        self.bias = nn.Parameter(torch.rand(self.dim * num_heads).uniform_(-0.1, 0.1))

    def forward(self, query: Tensor, value: Tensor, last_attn: Tensor) -> Tuple[Tensor, Tensor]:
        batch_size, q_len, v_len = value.size(0), query.size(1), value.size(1)

        if last_attn is None:
            last_attn = value.new_zeros(batch_size * self.num_heads, v_len)

        loc_energy = self.get_loc_energy(last_attn, batch_size, v_len)  # get location energy

        query = self.query_proj(query).view(batch_size, q_len, self.num_heads * self.dim)
        value = self.value_proj(value).view(batch_size, v_len, self.num_heads * self.dim) + loc_energy + self.bias

        query = query.view(batch_size, q_len, self.num_heads, self.dim).permute(2, 0, 1, 3)
        value = value.view(batch_size, v_len, self.num_heads, self.dim).permute(2, 0, 1, 3)
        query = query.contiguous().view(-1, q_len, self.dim)
        value = value.contiguous().view(-1, v_len, self.dim)

        context, attn = self.scaled_dot_attn(query, value)
        attn = attn.squeeze()

        context = context.view(self.num_heads, batch_size, q_len, self.dim).permute(1, 2, 0, 3)
        context = context.contiguous().view(batch_size, q_len, -1)

        return context, attn

    def get_loc_energy(self, last_attn: Tensor, batch_size: int, v_len: int) -> Tensor:
        conv_feat = self.conv1d(last_attn.unsqueeze(1))
        conv_feat = conv_feat.view(batch_size, self.num_heads, -1, v_len).permute(0, 1, 3, 2)

        loc_energy = self.loc_proj(conv_feat).view(batch_size, self.num_heads, v_len, self.dim)
        loc_energy = loc_energy.permute(0, 2, 1, 3).reshape(batch_size, v_len, self.num_heads * self.dim)

        return loc_energy