File size: 13,976 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import scipy
from torch.nn import functional as F
import torch
from torch import nn
import numpy as np
from modules.commons.wavenet import WN
from modules.tts.glow import utils


class ActNorm(nn.Module):
    def __init__(self, channels, ddi=False, **kwargs):
        super().__init__()
        self.channels = channels
        self.initialized = not ddi

        self.logs = nn.Parameter(torch.zeros(1, channels, 1))
        self.bias = nn.Parameter(torch.zeros(1, channels, 1))

    def forward(self, x, x_mask=None, reverse=False, **kwargs):
        if x_mask is None:
            x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype)
        x_len = torch.sum(x_mask, [1, 2])
        if not self.initialized:
            self.initialize(x, x_mask)
            self.initialized = True

        if reverse:
            z = (x - self.bias) * torch.exp(-self.logs) * x_mask
            logdet = torch.sum(-self.logs) * x_len
        else:
            z = (self.bias + torch.exp(self.logs) * x) * x_mask
            logdet = torch.sum(self.logs) * x_len  # [b]
        return z, logdet

    def store_inverse(self):
        pass

    def set_ddi(self, ddi):
        self.initialized = not ddi

    def initialize(self, x, x_mask):
        with torch.no_grad():
            denom = torch.sum(x_mask, [0, 2])
            m = torch.sum(x * x_mask, [0, 2]) / denom
            m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
            v = m_sq - (m ** 2)
            logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))

            bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
            logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)

            self.bias.data.copy_(bias_init)
            self.logs.data.copy_(logs_init)


class InvConvNear(nn.Module):
    def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs):
        super().__init__()
        assert (n_split % 2 == 0)
        self.channels = channels
        self.n_split = n_split
        self.n_sqz = n_sqz
        self.no_jacobian = no_jacobian

        w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0]
        if torch.det(w_init) < 0:
            w_init[:, 0] = -1 * w_init[:, 0]
        self.lu = lu
        if lu:
            # LU decomposition can slightly speed up the inverse
            np_p, np_l, np_u = scipy.linalg.lu(w_init)
            np_s = np.diag(np_u)
            np_sign_s = np.sign(np_s)
            np_log_s = np.log(np.abs(np_s))
            np_u = np.triu(np_u, k=1)
            l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1)
            eye = np.eye(*w_init.shape, dtype=float)

            self.register_buffer('p', torch.Tensor(np_p.astype(float)))
            self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float)))
            self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True)
            self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True)
            self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True)
            self.register_buffer('l_mask', torch.Tensor(l_mask))
            self.register_buffer('eye', torch.Tensor(eye))
        else:
            self.weight = nn.Parameter(w_init)

    def forward(self, x, x_mask=None, reverse=False, **kwargs):
        b, c, t = x.size()
        assert (c % self.n_split == 0)
        if x_mask is None:
            x_mask = 1
            x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
        else:
            x_len = torch.sum(x_mask, [1, 2])

        x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t)
        x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t)

        if self.lu:
            self.weight, log_s = self._get_weight()
            logdet = log_s.sum()
            logdet = logdet * (c / self.n_split) * x_len
        else:
            logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len  # [b]

        if reverse:
            if hasattr(self, "weight_inv"):
                weight = self.weight_inv
            else:
                weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
            logdet = -logdet
        else:
            weight = self.weight
            if self.no_jacobian:
                logdet = 0

        weight = weight.view(self.n_split, self.n_split, 1, 1)
        z = F.conv2d(x, weight)

        z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t)
        z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
        return z, logdet

    def _get_weight(self):
        l, log_s, u = self.l, self.log_s, self.u
        l = l * self.l_mask + self.eye
        u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s))
        weight = torch.matmul(self.p, torch.matmul(l, u))
        return weight, log_s

    def store_inverse(self):
        weight, _ = self._get_weight()
        self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device)


class InvConv(nn.Module):
    def __init__(self, channels, no_jacobian=False, lu=True, **kwargs):
        super().__init__()
        w_shape = [channels, channels]
        w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float)
        LU_decomposed = lu
        if not LU_decomposed:
            # Sample a random orthogonal matrix:
            self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init)))
        else:
            np_p, np_l, np_u = scipy.linalg.lu(w_init)
            np_s = np.diag(np_u)
            np_sign_s = np.sign(np_s)
            np_log_s = np.log(np.abs(np_s))
            np_u = np.triu(np_u, k=1)
            l_mask = np.tril(np.ones(w_shape, dtype=float), -1)
            eye = np.eye(*w_shape, dtype=float)

            self.register_buffer('p', torch.Tensor(np_p.astype(float)))
            self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float)))
            self.l = nn.Parameter(torch.Tensor(np_l.astype(float)))
            self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)))
            self.u = nn.Parameter(torch.Tensor(np_u.astype(float)))
            self.l_mask = torch.Tensor(l_mask)
            self.eye = torch.Tensor(eye)
        self.w_shape = w_shape
        self.LU = LU_decomposed
        self.weight = None

    def get_weight(self, device, reverse):
        w_shape = self.w_shape
        self.p = self.p.to(device)
        self.sign_s = self.sign_s.to(device)
        self.l_mask = self.l_mask.to(device)
        self.eye = self.eye.to(device)
        l = self.l * self.l_mask + self.eye
        u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s))
        dlogdet = self.log_s.sum()
        if not reverse:
            w = torch.matmul(self.p, torch.matmul(l, u))
        else:
            l = torch.inverse(l.double()).float()
            u = torch.inverse(u.double()).float()
            w = torch.matmul(u, torch.matmul(l, self.p.inverse()))
        return w.view(w_shape[0], w_shape[1], 1), dlogdet

    def forward(self, x, x_mask=None, reverse=False, **kwargs):
        """
        log-det = log|abs(|W|)| * pixels
        """
        b, c, t = x.size()
        if x_mask is None:
            x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
        else:
            x_len = torch.sum(x_mask, [1, 2])
        logdet = 0
        if not reverse:
            weight, dlogdet = self.get_weight(x.device, reverse)
            z = F.conv1d(x, weight)
            if logdet is not None:
                logdet = logdet + dlogdet * x_len
            return z, logdet
        else:
            if self.weight is None:
                weight, dlogdet = self.get_weight(x.device, reverse)
            else:
                weight, dlogdet = self.weight, self.dlogdet
            z = F.conv1d(x, weight)
            if logdet is not None:
                logdet = logdet - dlogdet * x_len
            return z, logdet

    def store_inverse(self):
        self.weight, self.dlogdet = self.get_weight('cuda', reverse=True)


class CouplingBlock(nn.Module):
    def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers,
                 gin_channels=0, p_dropout=0, sigmoid_scale=False, wn=None):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels
        self.p_dropout = p_dropout
        self.sigmoid_scale = sigmoid_scale

        start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1)
        start = torch.nn.utils.weight_norm(start)
        self.start = start
        # Initializing last layer to 0 makes the affine coupling layers
        # do nothing at first.  This helps with training stability
        end = torch.nn.Conv1d(hidden_channels, in_channels, 1)
        end.weight.data.zero_()
        end.bias.data.zero_()
        self.end = end
        self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout)
        if wn is not None:
            self.wn.in_layers = wn.in_layers
            self.wn.res_skip_layers = wn.res_skip_layers

    def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs):
        if x_mask is None:
            x_mask = 1
        x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:]

        x = self.start(x_0) * x_mask
        x = self.wn(x, x_mask, g)
        out = self.end(x)

        z_0 = x_0
        m = out[:, :self.in_channels // 2, :]
        logs = out[:, self.in_channels // 2:, :]
        if self.sigmoid_scale:
            logs = torch.log(1e-6 + torch.sigmoid(logs + 2))
        if reverse:
            z_1 = (x_1 - m) * torch.exp(-logs) * x_mask
            logdet = torch.sum(-logs * x_mask, [1, 2])
        else:
            z_1 = (m + torch.exp(logs) * x_1) * x_mask
            logdet = torch.sum(logs * x_mask, [1, 2])
        z = torch.cat([z_0, z_1], 1)
        return z, logdet

    def store_inverse(self):
        self.wn.remove_weight_norm()


class Glow(nn.Module):
    def __init__(self,
                 in_channels,
                 hidden_channels,
                 kernel_size,
                 dilation_rate,
                 n_blocks,
                 n_layers,
                 p_dropout=0.,
                 n_split=4,
                 n_sqz=2,
                 sigmoid_scale=False,
                 gin_channels=0,
                 inv_conv_type='near',
                 share_cond_layers=False,
                 share_wn_layers=0,
                 ):
        super().__init__()

        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_blocks = n_blocks
        self.n_layers = n_layers
        self.p_dropout = p_dropout
        self.n_split = n_split
        self.n_sqz = n_sqz
        self.sigmoid_scale = sigmoid_scale
        self.gin_channels = gin_channels
        self.share_cond_layers = share_cond_layers
        if gin_channels != 0 and share_cond_layers:
            cond_layer = torch.nn.Conv1d(gin_channels * n_sqz, 2 * hidden_channels * n_layers, 1)
            self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
        wn = None
        self.flows = nn.ModuleList()
        for b in range(n_blocks):
            self.flows.append(ActNorm(channels=in_channels * n_sqz))
            if inv_conv_type == 'near':
                self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz))
            if inv_conv_type == 'invconv':
                self.flows.append(InvConv(channels=in_channels * n_sqz))
            if share_wn_layers > 0:
                if b % share_wn_layers == 0:
                    wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels * n_sqz,
                            p_dropout, share_cond_layers)
            self.flows.append(
                CouplingBlock(
                    in_channels * n_sqz,
                    hidden_channels,
                    kernel_size=kernel_size,
                    dilation_rate=dilation_rate,
                    n_layers=n_layers,
                    gin_channels=gin_channels * n_sqz,
                    p_dropout=p_dropout,
                    sigmoid_scale=sigmoid_scale,
                    wn=wn
                ))

    def forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False):
        logdet_tot = 0
        if not reverse:
            flows = self.flows
        else:
            flows = reversed(self.flows)
        if return_hiddens:
            hs = []
        if self.n_sqz > 1:
            x, x_mask_ = utils.squeeze(x, x_mask, self.n_sqz)
            if g is not None:
                g, _ = utils.squeeze(g, x_mask, self.n_sqz)
            x_mask = x_mask_
        if self.share_cond_layers and g is not None:
            g = self.cond_layer(g)
        for f in flows:
            x, logdet = f(x, x_mask, g=g, reverse=reverse)
            if return_hiddens:
                hs.append(x)
            logdet_tot += logdet
        if self.n_sqz > 1:
            x, x_mask = utils.unsqueeze(x, x_mask, self.n_sqz)
        if return_hiddens:
            return x, logdet_tot, hs
        return x, logdet_tot

    def store_inverse(self):
        def remove_weight_norm(m):
            try:
                nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(remove_weight_norm)
        for f in self.flows:
            f.store_inverse()