File size: 2,198 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import torch
from torch import nn
from modules.commons.conv import ConditionalConvBlocks
from modules.commons.wavenet import WN
class FlipLayer(nn.Module):
def forward(self, x, *args, **kwargs):
x = torch.flip(x, [1])
return x
class CouplingLayer(nn.Module):
def __init__(self, c_in, hidden_size, kernel_size, n_layers, p_dropout=0, c_in_g=0, nn_type='wn'):
super().__init__()
self.channels = c_in
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.n_layers = n_layers
self.c_half = c_in // 2
self.pre = nn.Conv1d(self.c_half, hidden_size, 1)
if nn_type == 'wn':
self.enc = WN(hidden_size, kernel_size, 1, n_layers, p_dropout=p_dropout,
c_cond=c_in_g)
elif nn_type == 'conv':
self.enc = ConditionalConvBlocks(
hidden_size, c_in_g, hidden_size, None, kernel_size,
layers_in_block=1, is_BTC=False, num_layers=n_layers)
self.post = nn.Conv1d(hidden_size, self.c_half, 1)
def forward(self, x, nonpadding, cond=None, reverse=False):
x0, x1 = x[:, :self.c_half], x[:, self.c_half:]
x_ = self.pre(x0) * nonpadding
x_ = self.enc(x_, nonpadding=nonpadding, cond=cond)
m = self.post(x_)
x1 = m + x1 if not reverse else x1 - m
x = torch.cat([x0, x1], 1)
return x * nonpadding
class ResFlow(nn.Module):
def __init__(self,
c_in,
hidden_size,
kernel_size,
n_flow_layers,
n_flow_steps=4,
c_cond=0,
nn_type='wn'):
super().__init__()
self.flows = nn.ModuleList()
for i in range(n_flow_steps):
self.flows.append(
CouplingLayer(c_in, hidden_size, kernel_size, n_flow_layers, c_in_g=c_cond, nn_type=nn_type))
self.flows.append(FlipLayer())
def forward(self, x, nonpadding, cond=None, reverse=False):
for flow in (self.flows if not reverse else reversed(self.flows)):
x = flow(x, nonpadding, cond=cond, reverse=reverse)
return x
|