File size: 9,166 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
from torch import nn
import torch.nn.functional as F


class PreNet(nn.Module):
    def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
        super().__init__()
        self.fc1 = nn.Linear(in_dims, fc1_dims)
        self.fc2 = nn.Linear(fc1_dims, fc2_dims)
        self.p = dropout

    def forward(self, x):
        x = self.fc1(x)
        x = F.relu(x)
        x = F.dropout(x, self.p, training=self.training)
        x = self.fc2(x)
        x = F.relu(x)
        x = F.dropout(x, self.p, training=self.training)
        return x


class HighwayNetwork(nn.Module):
    def __init__(self, size):
        super().__init__()
        self.W1 = nn.Linear(size, size)
        self.W2 = nn.Linear(size, size)
        self.W1.bias.data.fill_(0.)

    def forward(self, x):
        x1 = self.W1(x)
        x2 = self.W2(x)
        g = torch.sigmoid(x2)
        y = g * F.relu(x1) + (1. - g) * x
        return y


class BatchNormConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel, relu=True):
        super().__init__()
        self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False)
        self.bnorm = nn.BatchNorm1d(out_channels)
        self.relu = relu

    def forward(self, x):
        x = self.conv(x)
        x = F.relu(x) if self.relu is True else x
        return self.bnorm(x)


class ConvNorm(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
                 padding=None, dilation=1, bias=True, w_init_gain='linear'):
        super(ConvNorm, self).__init__()
        if padding is None:
            assert (kernel_size % 2 == 1)
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(in_channels, out_channels,
                                    kernel_size=kernel_size, stride=stride,
                                    padding=padding, dilation=dilation,
                                    bias=bias)

        torch.nn.init.xavier_uniform_(
            self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, signal):
        conv_signal = self.conv(signal)
        return conv_signal


class CBHG(nn.Module):
    def __init__(self, K, in_channels, channels, proj_channels, num_highways):
        super().__init__()

        # List of all rnns to call `flatten_parameters()` on
        self._to_flatten = []

        self.bank_kernels = [i for i in range(1, K + 1)]
        self.conv1d_bank = nn.ModuleList()
        for k in self.bank_kernels:
            conv = BatchNormConv(in_channels, channels, k)
            self.conv1d_bank.append(conv)

        self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)

        self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3)
        self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False)

        # Fix the highway input if necessary
        if proj_channels[-1] != channels:
            self.highway_mismatch = True
            self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False)
        else:
            self.highway_mismatch = False

        self.highways = nn.ModuleList()
        for i in range(num_highways):
            hn = HighwayNetwork(channels)
            self.highways.append(hn)

        self.rnn = nn.GRU(channels, channels, batch_first=True, bidirectional=True)
        self._to_flatten.append(self.rnn)

        # Avoid fragmentation of RNN parameters and associated warning
        self._flatten_parameters()

    def forward(self, x):
        # Although we `_flatten_parameters()` on init, when using DataParallel
        # the model gets replicated, making it no longer guaranteed that the
        # weights are contiguous in GPU memory. Hence, we must call it again
        self._flatten_parameters()

        # Save these for later
        residual = x
        seq_len = x.size(-1)
        conv_bank = []

        # Convolution Bank
        for conv in self.conv1d_bank:
            c = conv(x)  # Convolution
            conv_bank.append(c[:, :, :seq_len])

        # Stack along the channel axis
        conv_bank = torch.cat(conv_bank, dim=1)

        # dump the last padding to fit residual
        x = self.maxpool(conv_bank)[:, :, :seq_len]

        # Conv1d projections
        x = self.conv_project1(x)
        x = self.conv_project2(x)

        # Residual Connect
        x = x + residual

        # Through the highways
        x = x.transpose(1, 2)
        if self.highway_mismatch is True:
            x = self.pre_highway(x)
        for h in self.highways:
            x = h(x)

        # And then the RNN
        x, _ = self.rnn(x)
        return x

    def _flatten_parameters(self):
        """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used
        to improve efficiency and avoid PyTorch yelling at us."""
        [m.flatten_parameters() for m in self._to_flatten]


class TacotronEncoder(nn.Module):
    def __init__(self, embed_dims, num_chars, cbhg_channels, K, num_highways, dropout):
        super().__init__()
        self.embedding = nn.Embedding(num_chars, embed_dims)
        self.pre_net = PreNet(embed_dims, embed_dims, embed_dims, dropout=dropout)
        self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels,
                         proj_channels=[cbhg_channels, cbhg_channels],
                         num_highways=num_highways)
        self.proj_out = nn.Linear(cbhg_channels * 2, cbhg_channels)

    def forward(self, x):
        x = self.embedding(x)
        x = self.pre_net(x)
        x.transpose_(1, 2)
        x = self.cbhg(x)
        x = self.proj_out(x)
        return x


class RNNEncoder(nn.Module):
    def __init__(self, num_chars, embedding_dim, n_convolutions=3, kernel_size=5):
        super(RNNEncoder, self).__init__()
        self.embedding = nn.Embedding(num_chars, embedding_dim, padding_idx=0)
        convolutions = []
        for _ in range(n_convolutions):
            conv_layer = nn.Sequential(
                ConvNorm(embedding_dim,
                         embedding_dim,
                         kernel_size=kernel_size, stride=1,
                         padding=int((kernel_size - 1) / 2),
                         dilation=1, w_init_gain='relu'),
                nn.BatchNorm1d(embedding_dim))
            convolutions.append(conv_layer)
        self.convolutions = nn.ModuleList(convolutions)

        self.lstm = nn.LSTM(embedding_dim, int(embedding_dim / 2), 1,
                            batch_first=True, bidirectional=True)

    def forward(self, x):
        input_lengths = (x > 0).sum(-1)
        input_lengths = input_lengths.cpu().numpy()

        x = self.embedding(x)
        x = x.transpose(1, 2)  # [B, H, T]
        for conv in self.convolutions:
            x = F.dropout(F.relu(conv(x)), 0.5, self.training) + x
        x = x.transpose(1, 2)  # [B, T, H]

        # pytorch tensor are not reversible, hence the conversion
        x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True, enforce_sorted=False)

        self.lstm.flatten_parameters()
        outputs, _ = self.lstm(x)
        outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)

        return outputs


class DecoderRNN(torch.nn.Module):
    def __init__(self, hidden_size, decoder_rnn_dim, dropout):
        super(DecoderRNN, self).__init__()
        self.in_conv1d = nn.Sequential(
            torch.nn.Conv1d(
                in_channels=hidden_size,
                out_channels=hidden_size,
                kernel_size=9, padding=4,
            ),
            torch.nn.ReLU(),
            torch.nn.Conv1d(
                in_channels=hidden_size,
                out_channels=hidden_size,
                kernel_size=9, padding=4,
            ),
        )
        self.ln = nn.LayerNorm(hidden_size)
        if decoder_rnn_dim == 0:
            decoder_rnn_dim = hidden_size * 2
        self.rnn = torch.nn.LSTM(
            input_size=hidden_size,
            hidden_size=decoder_rnn_dim,
            num_layers=1,
            batch_first=True,
            bidirectional=True,
            dropout=dropout
        )
        self.rnn.flatten_parameters()
        self.conv1d = torch.nn.Conv1d(
            in_channels=decoder_rnn_dim * 2,
            out_channels=hidden_size,
            kernel_size=3,
            padding=1,
        )

    def forward(self, x):
        input_masks = x.abs().sum(-1).ne(0).data[:, :, None]
        input_lengths = input_masks.sum([-1, -2])
        input_lengths = input_lengths.cpu().numpy()

        x = self.in_conv1d(x.transpose(1, 2)).transpose(1, 2)
        x = self.ln(x)
        x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True, enforce_sorted=False)
        self.rnn.flatten_parameters()
        x, _ = self.rnn(x)  # [B, T, C]
        x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
        x = x * input_masks
        pre_mel = self.conv1d(x.transpose(1, 2)).transpose(1, 2)  # [B, T, C]
        pre_mel = pre_mel * input_masks
        return pre_mel