File size: 6,298 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
from scipy.cluster.vq import kmeans2
from torch.nn import functional as F


class VQEmbeddingEMA(nn.Module):
    def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5,
                 print_vq_prob=False):
        super(VQEmbeddingEMA, self).__init__()
        self.commitment_cost = commitment_cost
        self.n_embeddings = n_embeddings
        self.decay = decay
        self.epsilon = epsilon
        self.print_vq_prob = print_vq_prob
        self.register_buffer('data_initialized', torch.zeros(1))

        init_bound = 1 / 512
        embedding = torch.Tensor(n_embeddings, embedding_dim)
        embedding.uniform_(-init_bound, init_bound)
        self.register_buffer("embedding", embedding)
        self.register_buffer("ema_count", torch.zeros(n_embeddings))
        self.register_buffer("ema_weight", self.embedding.clone())

    def encode(self, x):
        B, T, _ = x.shape
        M, D = self.embedding.size()
        x_flat = x.detach().reshape(-1, D)

        distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
                                torch.sum(x_flat ** 2, dim=1, keepdim=True),
                                x_flat, self.embedding.t(),
                                alpha=-2.0, beta=1.0)  # [B*T_mel, N_vq]
        indices = torch.argmin(distances.float(), dim=-1)  # [B*T_mel]
        quantized = F.embedding(indices, self.embedding)
        quantized = quantized.view_as(x)
        return x_flat, quantized, indices

    def forward(self, x):
        """

        :param x: [B, T, D]
        :return: [B, T, D]
        """
        B, T, _ = x.shape
        M, D = self.embedding.size()
        # if self.training and self.data_initialized.item() == 0:
        #     print('| running kmeans in VQVAE')  # data driven initialization for the embeddings
        #     x_flat = x.detach().reshape(-1, D)
        #     rp = torch.randperm(x_flat.size(0))
        #     kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points')
        #     self.embedding.copy_(torch.from_numpy(kd[0]))
        #     x_flat, quantized, indices = self.encode(x)
        #     encodings = F.one_hot(indices, M).float()
        #     self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat))
        #     self.ema_count.copy_(torch.sum(encodings, dim=0))

        x_flat, quantized, indices = self.encode(x)
        encodings = F.one_hot(indices, M).float()
        indices = indices.reshape(B, T)

        if self.training and self.data_initialized.item() != 0:
            self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0)

            n = torch.sum(self.ema_count)
            self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n

            dw = torch.matmul(encodings.t(), x_flat)
            self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw

            self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1)

        if self.training and self.data_initialized.item() == 0:
            self.data_initialized.fill_(1)

        e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none')
        nonpadding = (x.abs().sum(-1) > 0).float()
        e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum()
        loss = self.commitment_cost * e_latent_loss

        quantized = x + (quantized - x).detach()

        avg_probs = torch.mean(encodings, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
        if self.print_vq_prob:
            print("| VQ code avg_probs: ", avg_probs)
        return quantized, loss, indices, perplexity


class VQEmbedding(nn.Module):
    def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, lambda_kl=1.0):
        super(VQEmbedding, self).__init__()
        self.commitment_cost = commitment_cost
        self.lambda_kl = lambda_kl
        self.n_embeddings = n_embeddings
        embedding = torch.Tensor(n_embeddings, embedding_dim)
        self.register_buffer("embedding", embedding)
        self.register_buffer('data_initialized', torch.zeros(1))

    def encode(self, x):
        B, T, _ = x.shape
        M, D = self.embedding.size()
        x_flat = x.detach().reshape(-1, D)

        distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
                                torch.sum(x_flat ** 2, dim=1, keepdim=True),
                                x_flat, self.embedding.t(),
                                alpha=-2.0, beta=1.0)  # [B*T_mel, N_vq]
        indices = torch.argmin(distances.float(), dim=-1)  # [B*T_mel]
        quantized = F.embedding(indices, self.embedding)
        quantized = quantized.view_as(x)
        return x_flat, quantized, indices

    def forward(self, x):
        """

        :param x: [B, T, D]
        :return: [B, T, D]
        """
        B, T, _ = x.shape
        M, D = self.embedding.size()

        x_flat, quantized, indices = self.encode(x)
        encodings = F.one_hot(indices, M).float()
        indices = indices.reshape(B, T)

        # DeepMind def does not do this but I find I have to... ;\
        if self.training and self.data_initialized.item() == 0:
            print('| running kmeans in VQVAE')  # data driven initialization for the embeddings
            rp = torch.randperm(x_flat.size(0))
            kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points')
            self.embedding.copy_(torch.from_numpy(kd[0]))
            self.data_initialized.fill_(1)
            # TODO: this won't work in multi-GPU setups
            x_flat, quantized, indices = self.encode(x)
            encodings = F.one_hot(indices, M).float()
            indices = indices.reshape(B, T)

        # vector quantization cost that trains the embedding vectors
        loss = self.commitment_cost * (x.detach() - quantized).pow(2).mean() + \
               (quantized - x.detach()).pow(2).mean()
        loss *= self.lambda_kl

        quantized = x + (quantized - x).detach()

        avg_probs = torch.mean(encodings, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
        return quantized, loss, indices, perplexity