File size: 8,159 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
"""
Lookup Free Quantization
Proposed in https://arxiv.org/abs/2310.05737
basically a 2-level FSQ (Finite Scalar Quantization) with entropy loss
https://arxiv.org/abs/2309.15505
"""
from math import log2, ceil
from collections import namedtuple
import torch
from torch import nn, Tensor, einsum
import torch.nn.functional as F
from torch.nn import Module
from einops import rearrange, reduce, pack, unpack
# constants
# Return = namedtuple('Return', ['quantized', 'indices', 'entropy_aux_loss'])
LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'batch_entropy', 'commitment'])
# helper functions
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg() if callable(arg) else arg
return None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
# distance
def euclidean_distance_squared(x, y):
x2 = reduce(x ** 2, '... n d -> ... n', 'sum')
y2 = reduce(y ** 2, 'n d -> n', 'sum')
xy = einsum('... i d, j d -> ... i j', x, y) * -2
return rearrange(x2, '... i -> ... i 1') + y2 + xy
# entropy
def log(t, eps = 1e-20):
return t.clamp(min = eps).log()
def entropy(prob):
return -prob * log(prob)
# class
class LFQ(Module):
def __init__(
self,
*,
dim = None,
codebook_size = None,
entropy_loss_weight = 0.1,
commitment_loss_weight = 1.,
diversity_gamma = 2.5,
straight_through_activation = nn.Identity(),
num_codebooks = 1,
keep_num_codebooks_dim = None,
codebook_scale = 1. # for residual LFQ, codebook scaled down by 2x at each layer
):
super().__init__()
# some assert validations
assert exists(dim) or exists(codebook_size), 'either dim or codebook_size must be specified for LFQ'
assert not exists(codebook_size) or log2(codebook_size).is_integer(), f'your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})'
codebook_size = default(codebook_size, lambda: 2 ** dim)
codebook_dim = int(log2(codebook_size))
codebook_dims = codebook_dim * num_codebooks
dim = default(dim, codebook_dims)
self.project_in = nn.Linear(dim, codebook_dims) if dim != codebook_dims else nn.Identity()
self.project_out = nn.Linear(codebook_dims, dim) if dim != codebook_dims else nn.Identity()
self.dim = dim
self.codebook_dim = codebook_dim
self.num_codebooks = num_codebooks
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
# straight through activation
self.activation = straight_through_activation
# entropy aux loss related weights
self.diversity_gamma = diversity_gamma
self.entropy_loss_weight = entropy_loss_weight
# codebook scale
self.codebook_scale = codebook_scale
# commitment loss
self.commitment_loss_weight = commitment_loss_weight
# for no auxiliary loss, during inference
self.register_buffer('mask', 2 ** torch.arange(codebook_dim - 1, -1, -1))
self.register_buffer('zero', torch.tensor(0.), persistent = False)
# codes
all_codes = torch.arange(codebook_size)
bits = ((all_codes[..., None].int() & self.mask) != 0).float()
codebook = self.bits_to_codes(bits)
self.register_buffer('codebook', codebook, persistent = False)
def bits_to_codes(self, bits):
return bits * self.codebook_scale * 2 - self.codebook_scale
@property
def dtype(self):
return self.codebook.dtype
def indices_to_codes(
self,
indices,
project_out = True
):
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, '... -> ... 1')
# indices to codes, which are bits of either -1 or 1
bits = ((indices[..., None].int() & self.mask) != 0).to(self.dtype)
codes = self.bits_to_codes(bits)
codes = rearrange(codes, '... c d -> ... (c d)')
# whether to project codes out to original dimensions
# if the input feature dimensions were not log2(codebook size)
if project_out:
codes = self.project_out(codes)
# rearrange codes back to original shape
if is_img_or_video:
codes = rearrange(codes, 'b ... d -> b d ...')
return codes
def forward(
self,
x,
mask=None,
inv_temperature = 1.,
return_loss_breakdown = False
):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
is_img_or_video = x.ndim >= 4
# standardize image or video into (batch, seq, dimension)
if is_img_or_video:
x = rearrange(x, 'b d ... -> b ... d')
x, ps = pack_one(x, 'b * d')
assert x.shape[-1] == self.dim, f'expected dimension of {self.dim} but received {x.shape[-1]}'
x = self.project_in(x)
# split out number of codebooks
x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks)
# quantize by eq 3.
original_input = x
codebook_value = torch.ones_like(x) * self.codebook_scale
quantized = torch.where(x > 0, codebook_value, -codebook_value)
# use straight-through gradients with tanh (or custom activation fn) if training
if self.training:
x = self.activation(x)
x = x - x.detach() + quantized
else:
x = quantized
# calculate indices
indices = reduce((x > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum')
# entropy aux loss
if self.training:
distance = euclidean_distance_squared(original_input, self.codebook)
prob = (-distance * inv_temperature).softmax(dim = -1)
per_sample_entropy = entropy(prob).mean()
avg_prob = reduce(prob, 'b n c d -> b c d', 'mean')
codebook_entropy = entropy(avg_prob).mean()
# 1. entropy will be nudged to be low for each code, to encourage the network to output confident predictions
# 2. codebook entropy will be nudged to be high, to encourage all codes to be uniformly used within the batch
entropy_aux_loss = per_sample_entropy - self.diversity_gamma * codebook_entropy
else:
# if not training, just return dummy 0
entropy_aux_loss = per_sample_entropy = codebook_entropy = self.zero
# commit loss
if self.training:
commit_loss = F.mse_loss(original_input, quantized.detach())
else:
commit_loss = self.zero
# merge back codebook dim
x = rearrange(x, 'b n c d -> b n (c d)')
# project out to feature dimension if needed
x = self.project_out(x)
# reconstitute image or video dimensions
if is_img_or_video:
x = unpack_one(x, ps, 'b * d')
x = rearrange(x, 'b ... d -> b d ...')
indices = unpack_one(indices, ps, 'b * c')
# whether to remove single codebook dim
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, '... 1 -> ...')
# complete aux loss
aux_loss = entropy_aux_loss * self.entropy_loss_weight + commit_loss * self.commitment_loss_weight
ret = x, aux_loss, indices
if not return_loss_breakdown:
return ret
return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss)
def get_codebook_entry(self, encoding_indices):
return self.indices_to_codes(encoding_indices)
|