File size: 4,179 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
from transformers import Wav2Vec2Processor, HubertModel
import soundfile as sf
import numpy as np
import torch
import os
from utils.commons.hparams import set_hparams, hparams
wav2vec2_processor = None
hubert_model = None
def get_hubert_from_16k_wav(wav_16k_name):
speech_16k, _ = sf.read(wav_16k_name)
hubert = get_hubert_from_16k_speech(speech_16k)
return hubert
@torch.no_grad()
def get_hubert_from_16k_speech(speech, device="cuda:0"):
global hubert_model, wav2vec2_processor
local_path = '/home/tiger/.cache/huggingface/hub/models--facebook--hubert-large-ls960-ft/snapshots/ece5fabbf034c1073acae96d5401b25be96709d8'
if hubert_model is None:
print("Loading the HuBERT Model...")
if os.path.exists(local_path):
hubert_model = HubertModel.from_pretrained(local_path)
else:
hubert_model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
hubert_model = hubert_model.to(device)
if wav2vec2_processor is None:
print("Loading the Wav2Vec2 Processor...")
if os.path.exists(local_path):
wav2vec2_processor = Wav2Vec2Processor.from_pretrained(local_path)
else:
wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")
if speech.ndim ==2:
speech = speech[:, 0] # [T, 2] ==> [T,]
input_values_all = wav2vec2_processor(speech, return_tensors="pt", sampling_rate=16000).input_values # [1, T]
input_values_all = input_values_all.to(device)
# For long audio sequence, due to the memory limitation, we cannot process them in one run
# HuBERT process the wav with a CNN of stride [5,2,2,2,2,2], making a stride of 320
# Besides, the kernel is [10,3,3,3,3,2,2], making 400 a fundamental unit to get 1 time step.
# So the CNN is euqal to a big Conv1D with kernel k=400 and stride s=320
# We have the equation to calculate out time step: T = floor((t-k)/s)
# To prevent overlap, we set each clip length of (K+S*(N-1)), where N is the expected length T of this clip
# The start point of next clip should roll back with a length of (kernel-stride) so it is stride * N
kernel = 400
stride = 320
clip_length = stride * 1000
num_iter = input_values_all.shape[1] // clip_length
expected_T = (input_values_all.shape[1] - (kernel-stride)) // stride
res_lst = []
for i in range(num_iter):
if i == 0:
start_idx = 0
end_idx = clip_length - stride + kernel
else:
start_idx = clip_length * i
end_idx = start_idx + (clip_length - stride + kernel)
input_values = input_values_all[:, start_idx: end_idx]
hidden_states = hubert_model.forward(input_values).last_hidden_state # [B=1, T=pts//320, hid=1024]
res_lst.append(hidden_states[0])
if num_iter > 0:
input_values = input_values_all[:, clip_length * num_iter:]
else:
input_values = input_values_all
if input_values.shape[1] >= kernel: # if the last batch is shorter than kernel_size, skip it
hidden_states = hubert_model(input_values).last_hidden_state # [B=1, T=pts//320, hid=1024]
res_lst.append(hidden_states[0])
ret = torch.cat(res_lst, dim=0).cpu() # [T, 1024]
assert abs(ret.shape[0] - expected_T) <= 1
if ret.shape[0] < expected_T: # if skipping the last short
ret = torch.cat([ret, ret[:, -1:, :].repeat([1,expected_T-ret.shape[0],1])], dim=1)
else:
ret = ret[:expected_T]
return ret
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--video_id', type=str, default='May', help='')
args = parser.parse_args()
### Process Single Long Audio for NeRF dataset
person_id = args.video_id
wav_16k_name = f"data/processed/videos/{person_id}/aud.wav"
hubert_npy_name = f"data/processed/videos/{person_id}/aud_hubert.npy"
speech_16k, _ = sf.read(wav_16k_name)
hubert_hidden = get_hubert_from_16k_speech(speech_16k)
np.save(hubert_npy_name, hubert_hidden.detach().numpy())
print(f"Saved at {hubert_npy_name}")
|