File size: 22,328 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import os
os.environ["OMP_NUM_THREADS"] = "1"
import random
import glob
import cv2
import tqdm
import numpy as np
from typing import Union
from utils.commons.tensor_utils import convert_to_np
from utils.commons.os_utils import multiprocess_glob
import pickle
import traceback
import multiprocessing
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
from scipy.ndimage import binary_erosion, binary_dilation
from sklearn.neighbors import NearestNeighbors
from mediapipe.tasks.python import vision
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter, encode_segmap_mask_to_image, decode_segmap_mask_from_image, job_cal_seg_map_for_image

seg_model   = None
segmenter   = None
mat_model   = None
lama_model  = None
lama_config = None

from data_gen.utils.process_video.split_video_to_imgs import extract_img_job

BG_NAME_MAP = {
    "knn": "",
}
FRAME_SELECT_INTERVAL = 5
SIM_METHOD = "mse"
SIM_THRESHOLD = 3

def save_file(name, content):
    with open(name, "wb") as f:
        pickle.dump(content, f) 
        
def load_file(name):
    with open(name, "rb") as f:
        content = pickle.load(f)
    return content

def save_rgb_alpha_image_to_path(img, alpha, img_path):
    try: os.makedirs(os.path.dirname(img_path), exist_ok=True)
    except: pass
    cv2.imwrite(img_path, np.concatenate([cv2.cvtColor(img, cv2.COLOR_RGB2BGR), alpha], axis=-1))

def save_rgb_image_to_path(img, img_path):
    try: os.makedirs(os.path.dirname(img_path), exist_ok=True)
    except: pass
    cv2.imwrite(img_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))

def load_rgb_image_to_path(img_path):
    return cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)

def image_similarity(x: np.ndarray, y: np.ndarray, method="mse"):
    if method == "mse":
        return np.mean((x - y) ** 2)
    else:
        raise NotImplementedError

def extract_background(img_lst, segmap_mask_lst=None, method="knn", device='cpu', mix_bg=True):
    """
    img_lst: list of rgb ndarray
    method: "knn"
    """
    global segmenter
    global seg_model
    global mat_model
    global lama_model
    global lama_config
    
    assert len(img_lst) > 0
    if segmap_mask_lst is not None:
        assert len(segmap_mask_lst) == len(img_lst)
    else:
        del segmenter
        del seg_model
        seg_model = MediapipeSegmenter()
        segmenter = vision.ImageSegmenter.create_from_options(seg_model.video_options)
        
    def get_segmap_mask(img_lst, segmap_mask_lst, index):
        if segmap_mask_lst is not None:
            segmap = refresh_segment_mask(segmap_mask_lst[index])
        else:
            segmap = seg_model._cal_seg_map(refresh_image(img_lst[index]), segmenter=segmenter)
        return segmap
        
    if method == "knn":
        num_frames = len(img_lst)
        if num_frames < 100:
            FRAME_SELECT_INTERVAL = 5
        elif num_frames < 10000:
            FRAME_SELECT_INTERVAL = 20
        else:
            FRAME_SELECT_INTERVAL = num_frames // 500

        img_lst = img_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else img_lst[0:1]
            
        if segmap_mask_lst is not None:
            segmap_mask_lst = segmap_mask_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else segmap_mask_lst[0:1]
            assert len(img_lst) == len(segmap_mask_lst)
        # get H/W
        h, w = refresh_image(img_lst[0]).shape[:2]

        # nearest neighbors
        all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose() # [512*512, 2] coordinate grid
        distss = []
        for idx, img in tqdm.tqdm(enumerate(img_lst), desc='combining backgrounds...', total=len(img_lst)):
            segmap = get_segmap_mask(img_lst=img_lst, segmap_mask_lst=segmap_mask_lst, index=idx)
            bg = (segmap[0]).astype(bool) # [h,w] bool mask
            fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0) # [N_nonbg,2] coordinate of non-bg pixels
            nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
            dists, _ = nbrs.kneighbors(all_xys) # [512*512, 1] distance to nearest non-bg pixel
            distss.append(dists)

        distss = np.stack(distss) # [B, 512*512, 1]
        max_dist = np.max(distss, 0) # [512*512, 1]
        max_id = np.argmax(distss, 0) # id of frame

        bc_pixs = max_dist > 10 # 在各个frame有一个出现过是bg的pixel,bg标准是离最近的non-bg pixel距离大于10
        bc_pixs_id = np.nonzero(bc_pixs)
        bc_ids = max_id[bc_pixs]

        # TODO: maybe we should reimplement here to avoid memory costs?
        # though there is upper limits of images here
        num_pixs = distss.shape[1]
        bg_img = np.zeros((h*w, 3), dtype=np.uint8)
        img_lst = [refresh_image(img) for img in img_lst] 
        imgs = np.stack(img_lst).reshape(-1, num_pixs, 3) 
        bg_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :] # 对那些铁bg的pixel,直接去对应的image里面采样
        bg_img = bg_img.reshape(h, w, 3)

        max_dist = max_dist.reshape(h, w)
        bc_pixs = max_dist > 10 # 5
        bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose()
        fg_xys = np.stack(np.nonzero(bc_pixs)).transpose()
        nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
        distances, indices = nbrs.kneighbors(bg_xys) # 对non-bg img,用KNN找最近的bg pixel
        bg_fg_xys = fg_xys[indices[:, 0]]
        bg_img[bg_xys[:, 0], bg_xys[:, 1], :] = bg_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :]
    else:
        raise NotImplementedError # deperated
    
    return bg_img

def inpaint_torso_job(gt_img, segmap):
    bg_part = (segmap[0]).astype(bool)
    head_part = (segmap[1] + segmap[3] + segmap[5]).astype(bool)
    neck_part = (segmap[2]).astype(bool)
    torso_part = (segmap[4]).astype(bool) 
    img = gt_img.copy()
    img[head_part] = 0

    # torso part "vertical" in-painting...
    L = 8 + 1
    torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2]
    # lexsort: sort 2D coords first by y then by x, 
    # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
    inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1]))
    torso_coords = torso_coords[inds]
    # choose the top pixel for each column
    u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True)
    top_torso_coords = torso_coords[uid] # [m, 2]
    # only keep top-is-head pixels
    top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0]) # [N, 2]
    mask = head_part[tuple(top_torso_coords_up.T)] 
    if mask.any():
        top_torso_coords = top_torso_coords[mask]
        # get the color
        top_torso_colors = gt_img[tuple(top_torso_coords.T)] # [m, 3]
        # construct inpaint coords (vertically up, or minus in x)
        inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2]
        inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
        inpaint_torso_coords += inpaint_offsets
        inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2]
        inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3]
        darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
        inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
        # set color
        img[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors
        inpaint_torso_mask = np.zeros_like(img[..., 0]).astype(bool)
        inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True
    else:
        inpaint_torso_mask = None
    
    # neck part "vertical" in-painting...
    push_down = 4
    L = 48 + push_down + 1
    neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3)
    neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2]
    # lexsort: sort 2D coords first by y then by x, 
    # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
    inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1]))
    neck_coords = neck_coords[inds]
    # choose the top pixel for each column
    u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True)
    top_neck_coords = neck_coords[uid] # [m, 2]
    # only keep top-is-head pixels
    top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0])
    mask = head_part[tuple(top_neck_coords_up.T)] 
    top_neck_coords = top_neck_coords[mask]
    # push these top down for 4 pixels to make the neck inpainting more natural...
    offset_down = np.minimum(ucnt[mask] - 1, push_down)
    top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1)
    # get the color
    top_neck_colors = gt_img[tuple(top_neck_coords.T)] # [m, 3]
    # construct inpaint coords (vertically up, or minus in x)
    inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2]
    inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
    inpaint_neck_coords += inpaint_offsets
    inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2]
    inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3]
    darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
    inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
    # set color
    img[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors
    # apply blurring to the inpaint area to avoid vertical-line artifects...
    inpaint_mask = np.zeros_like(img[..., 0]).astype(bool)
    inpaint_mask[tuple(inpaint_neck_coords.T)] = True

    blur_img = img.copy()
    blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT)
    img[inpaint_mask] = blur_img[inpaint_mask]

    # set mask
    torso_img_mask = (neck_part | torso_part | inpaint_mask)
    torso_with_bg_img_mask = (bg_part | neck_part | torso_part | inpaint_mask)
    if inpaint_torso_mask is not None:
        torso_img_mask = torso_img_mask | inpaint_torso_mask
        torso_with_bg_img_mask = torso_with_bg_img_mask | inpaint_torso_mask
    
    torso_img = img.copy()
    torso_img[~torso_img_mask] = 0
    torso_with_bg_img = img.copy()
    torso_img[~torso_with_bg_img_mask] = 0

    return torso_img, torso_img_mask, torso_with_bg_img, torso_with_bg_img_mask

def load_segment_mask_from_file(filename: str):
    encoded_segmap = load_rgb_image_to_path(filename)
    segmap_mask = decode_segmap_mask_from_image(encoded_segmap)
    return segmap_mask

# load segment mask to memory if not loaded yet
def refresh_segment_mask(segmap_mask: Union[str, np.ndarray]):
    if isinstance(segmap_mask, str):
        segmap_mask = load_segment_mask_from_file(segmap_mask)
    return segmap_mask

# load segment mask to memory if not loaded yet
def refresh_image(image: Union[str, np.ndarray]):
    if isinstance(image, str):
        image = load_rgb_image_to_path(image)
    return image

def generate_segment_imgs_job(img_name, segmap, img):
    out_img_name = segmap_name = img_name.replace("/gt_imgs/", "/segmaps/").replace(".jpg", ".png") # 存成jpg的话,pixel value会有误差
    try: os.makedirs(os.path.dirname(out_img_name), exist_ok=True)
    except: pass
    encoded_segmap = encode_segmap_mask_to_image(segmap)
    save_rgb_image_to_path(encoded_segmap, out_img_name)

    for mode in ['head', 'torso', 'person', 'bg']:
        out_img, mask = seg_model._seg_out_img_with_segmap(img, segmap, mode=mode)
        img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha
        mask = mask[0][..., None]
        img_alpha[~mask] = 0
        out_img_name = img_name.replace("/gt_imgs/", f"/{mode}_imgs/").replace(".jpg", ".png")
        save_rgb_alpha_image_to_path(out_img, img_alpha, out_img_name)
    
    inpaint_torso_img, inpaint_torso_img_mask, inpaint_torso_with_bg_img, inpaint_torso_with_bg_img_mask = inpaint_torso_job(img, segmap)
    img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha
    img_alpha[~inpaint_torso_img_mask[..., None]] = 0
    out_img_name = img_name.replace("/gt_imgs/", f"/inpaint_torso_imgs/").replace(".jpg", ".png")
    save_rgb_alpha_image_to_path(inpaint_torso_img, img_alpha, out_img_name)
    return segmap_name
    
def segment_and_generate_for_image_job(img_name, img, segmenter_options=None, segmenter=None, store_in_memory=False):
    img = refresh_image(img)
    segmap_mask, segmap_image = job_cal_seg_map_for_image(img, segmenter_options=segmenter_options, segmenter=segmenter)
    segmap_name = generate_segment_imgs_job(img_name=img_name, segmap=segmap_mask, img=img)
    if store_in_memory:
        return segmap_mask
    else:
        return segmap_name
    
def extract_segment_job(
    video_name, 
    nerf=False, 
    background_method='knn', 
    device="cpu",
    total_gpus=0, 
    mix_bg=True,
    store_in_memory=False, # set to True to speed up a bit of preprocess, but leads to HUGE memory costs (100GB for 5-min video)
    force_single_process=False, # turn this on if you find multi-process does not work on your environment
):
    global segmenter
    global seg_model
    del segmenter
    del seg_model
    seg_model = MediapipeSegmenter()
    segmenter = vision.ImageSegmenter.create_from_options(seg_model.options)
    # nerf means that we extract only one video, so can enable multi-process acceleration
    multiprocess_enable = nerf and not force_single_process 
    try:
        if "cuda" in device:
            # determine which cuda index from subprocess id
            pname = multiprocessing.current_process().name
            pid = int(pname.rsplit("-", 1)[-1]) - 1
            cuda_id = pid % total_gpus
            device = f"cuda:{cuda_id}"

        if nerf: # single video
            raw_img_dir = video_name.replace(".mp4", "/gt_imgs/").replace("/raw/","/processed/")
        else: # whole dataset
            raw_img_dir = video_name.replace(".mp4", "").replace("/video/", "/gt_imgs/")
        if not os.path.exists(raw_img_dir):
            extract_img_job(video_name, raw_img_dir) # use ffmpeg to split video into imgs
        
        img_names = glob.glob(os.path.join(raw_img_dir, "*.jpg"))

        img_lst = []

        for img_name in img_names:
            if store_in_memory:
                img = load_rgb_image_to_path(img_name)
            else:
                img = img_name
            img_lst.append(img)

        print("| Extracting Segmaps && Saving...")
        args = []
        segmap_mask_lst = []
        # preparing parameters for segment
        for i in range(len(img_lst)):
            img_name = img_names[i]
            img = img_lst[i]
            if multiprocess_enable: # create seg_model in subprocesses here
                options = seg_model.options
                segmenter_arg = None
            else: # use seg_model of this process
                options = None
                segmenter_arg = segmenter
            arg = (img_name, img, options, segmenter_arg, store_in_memory)
            args.append(arg)
            
        if multiprocess_enable:
            for (_, res) in multiprocess_run_tqdm(segment_and_generate_for_image_job, args=args, num_workers=16, desc='generating segment images in multi-processes...'):
                segmap_mask = res
                segmap_mask_lst.append(segmap_mask)
        else:
            for index in tqdm.tqdm(range(len(img_lst)), desc="generating segment images in single-process..."):
                segmap_mask = segment_and_generate_for_image_job(*args[index])
                segmap_mask_lst.append(segmap_mask)
        print("| Extracted Segmaps Done.")
        
        print("| Extracting background...")
        bg_prefix_name = f"bg{BG_NAME_MAP[background_method]}"
        bg_img = extract_background(img_lst, segmap_mask_lst, method=background_method, device=device, mix_bg=mix_bg)
        if nerf:
            out_img_name = video_name.replace("/raw/", "/processed/").replace(".mp4", f"/{bg_prefix_name}.jpg")
        else:
            out_img_name = video_name.replace("/video/", f"/{bg_prefix_name}_img/").replace(".mp4", ".jpg")
        save_rgb_image_to_path(bg_img, out_img_name)
        print("| Extracted background done.")
        
        print("| Extracting com_imgs...")
        com_prefix_name = f"com{BG_NAME_MAP[background_method]}"
        for i in tqdm.trange(len(img_names), desc='extracting com_imgs'):
            img_name = img_names[i]
            com_img = refresh_image(img_lst[i]).copy()
            segmap = refresh_segment_mask(segmap_mask_lst[i])
            bg_part = segmap[0].astype(bool)[..., None].repeat(3,axis=-1)
            com_img[bg_part] = bg_img[bg_part]
            out_img_name = img_name.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
            save_rgb_image_to_path(com_img, out_img_name)
        print("| Extracted com_imgs done.")
        
        return 0
    except Exception as e:
        print(str(type(e)), e)
        traceback.print_exc(e)
        return 1

def out_exist_job(vid_name, background_method='knn'):
    com_prefix_name = f"com{BG_NAME_MAP[background_method]}"
    img_dir = vid_name.replace("/video/", "/gt_imgs/").replace(".mp4", "")
    out_dir1 = img_dir.replace("/gt_imgs/", "/head_imgs/")
    out_dir2 = img_dir.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
    
    if os.path.exists(img_dir) and os.path.exists(out_dir1) and os.path.exists(out_dir1) and os.path.exists(out_dir2) :
        num_frames = len(os.listdir(img_dir))
        if len(os.listdir(out_dir1)) == num_frames and len(os.listdir(out_dir2)) == num_frames:
            return None
        else:
            return vid_name
    else:
        return vid_name

def get_todo_vid_names(vid_names, background_method='knn'):
    if len(vid_names) == 1: # nerf
        return vid_names
    todo_vid_names = []
    fn_args = [(vid_name, background_method) for vid_name in vid_names]
    for i, res in multiprocess_run_tqdm(out_exist_job, fn_args, num_workers=16, desc="checking todo videos..."):
        if res is not None:
            todo_vid_names.append(res)
    return todo_vid_names

if __name__ == '__main__':
    import argparse, glob, tqdm, random
    parser = argparse.ArgumentParser()
    parser.add_argument("--vid_dir", default='/home/tiger/datasets/raw/TH1KH_512/video')
    parser.add_argument("--ds_name", default='TH1KH_512')
    parser.add_argument("--num_workers", default=48, type=int)
    parser.add_argument("--seed", default=0, type=int)
    parser.add_argument("--process_id", default=0, type=int)
    parser.add_argument("--total_process", default=1, type=int)
    parser.add_argument("--reset", action='store_true')
    parser.add_argument("--load_names", action="store_true")
    parser.add_argument("--background_method", choices=['knn', 'mat', 'ddnm', 'lama'], type=str, default='knn')
    parser.add_argument("--total_gpus", default=0, type=int) # zero gpus means utilizing cpu
    parser.add_argument("--no_mix_bg", action="store_true")
    parser.add_argument("--store_in_memory", action="store_true") # set to True to speed up preprocess, but leads to high memory costs
    parser.add_argument("--force_single_process", action="store_true") # turn this on if you find multi-process does not work on your environment

    args = parser.parse_args()
    vid_dir = args.vid_dir
    ds_name = args.ds_name
    load_names = args.load_names
    background_method = args.background_method
    total_gpus = args.total_gpus
    mix_bg = not args.no_mix_bg
    store_in_memory = args.store_in_memory
    force_single_process = args.force_single_process

    devices = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(",")
    for d in devices[:total_gpus]:
        os.system(f'pkill -f "voidgpu{d}"')
        
    if ds_name.lower() == 'nerf': # 处理单个视频
        vid_names = [vid_dir]
        out_names = [video_name.replace("/raw/", "/processed/").replace(".mp4","_lms.npy") for video_name in vid_names]
    else: # 处理整个数据集
        if ds_name in ['lrs3_trainval']:
            vid_name_pattern = os.path.join(vid_dir, "*/*.mp4")
        elif ds_name in ['TH1KH_512', 'CelebV-HQ']:
            vid_name_pattern = os.path.join(vid_dir, "*.mp4")
        elif ds_name in ['lrs2', 'lrs3', 'voxceleb2']:
            vid_name_pattern = os.path.join(vid_dir, "*/*/*.mp4")
        elif ds_name in ["RAVDESS", 'VFHQ']:
            vid_name_pattern = os.path.join(vid_dir, "*/*/*/*.mp4")
        else:
            raise NotImplementedError()
        
        vid_names_path = os.path.join(vid_dir, "vid_names.pkl")
        if os.path.exists(vid_names_path) and load_names:
            print(f"loading vid names from {vid_names_path}")
            vid_names = load_file(vid_names_path)
        else:
            vid_names = multiprocess_glob(vid_name_pattern)
        vid_names = sorted(vid_names)
        print(f"saving vid names to {vid_names_path}")
        save_file(vid_names_path, vid_names)

    vid_names = sorted(vid_names)
    random.seed(args.seed)
    random.shuffle(vid_names)

    process_id = args.process_id
    total_process = args.total_process
    if total_process > 1:
        assert process_id <= total_process -1
        num_samples_per_process = len(vid_names) // total_process
        if process_id == total_process:
            vid_names = vid_names[process_id * num_samples_per_process : ]
        else:
            vid_names = vid_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process]
    
    if not args.reset:
        vid_names = get_todo_vid_names(vid_names, background_method)
    print(f"todo videos number: {len(vid_names)}")

    device = "cuda" if total_gpus > 0 else "cpu"
    extract_job = extract_segment_job
    fn_args = [(vid_name, ds_name=='nerf', background_method, device, total_gpus, mix_bg, store_in_memory, force_single_process) for i, vid_name in enumerate(vid_names)]
        
    if ds_name == 'nerf': # 处理单个视频
        extract_job(*fn_args[0])
    else:
        for vid_name in multiprocess_run_tqdm(extract_job, fn_args, desc=f"Root process {args.process_id}:  segment images", num_workers=args.num_workers):
            pass